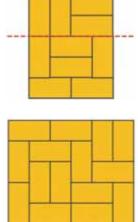
# Teacher notes



## **Building for the future: Bricks and Tiles**

### **Description**


This topic begins with the humble brick, staple building material for walls, homes and factories in the region's industrial centres.

**Activity 1: What makes a wall strong?** 

Activity 2: Square tiles Activity 3: Drawing tiles

What makes a wall strong? explores lines of weakness in structures. Boxes of dominoes are useful for this activity, as the standard dimensions of the long side face of a brick are in the ratio 2:1. Strictly, this is an approximation, since mortar is used to cement the bricks together; the dimensions are such that the ratio is 2:1 after the thickness of the mortar is taken into account. You can cut card shapes or just work on squared paper if no dominos are available.

The task is to avoid lines of weakness in either direction, vertically or horizontally. This arrangement of bricks has one horizontal line of weakness. Pupils will probably be surprised at how difficult it is to avoid such lines. It is a good idea to encourage them to check with a partner – someone else can often spot a line of weakness that you have missed yourself.



The smallest rectangular solution is a 6 by 5 rectangle. It can be shown using proof by exhaustion that this is the smallest rectangle: this is a challenging task to complete. Thinking about odd by odd rectangles will help eliminate some possibilities. One way to prove that no odd by odd rectangle can be made is to note that the product of any two odd numbers is another odd number. Since each brick covers 2 squares, the number of squares covered by any set of 2 by 1 bricks will always be an even number.

#### Resources


Dominoes are available from Arnold. http://www.nesarnold.co.uk/



Square tiles gives rich opportunities to consider reflective and rotational symmetry and you could bring in art from different cultures. Drawing tiles extends this activity to examine what happens if you begin with an irregular tile, and then create a tessellation by placing the irregular tile using different rotations, for example:



...and here is an example where reflections have been used to place the same irregular tile.



It is easy to create a tile using the Draw toolbar within Microsoft Word for this activity, and this allows children to experiment with rotation and reflection possibilities very easily. There is a helpful internet resource which explains how to do this at: http://www.fsmq.org/data//files/ispsamakeysi-9259.doc

#### The mathematics

What makes a wall strong? will develop the process skills involved in solving problems: recording, systematic experimentation, justifying and proving. It gives opportunities for proof by systematic exhaustion.

Square tiles and Drawing tiles require thinking about and manipulating transformations – translation, reflection and rotation.