
SHARING DECRYPTION KEYS AND 
DECODING MESSAGES
Every time you send an email or you pay for something online, or with your debit card, a secure 
communication channel needs to be established between the sender and the receiver, so that nobody 
else can see the information being shared and steal it.

The first step is to share the decryption key. But in order to do this the sender needs to be sure it can 
trust the receiver. So, the receiver needs to signal the sender that they can be trusted. 

In this activity your teacher will act as the sender and you will be the receiver and we will simulate this 
first step with a simple ‘shift cipher’ (or ‘Caesar cipher’). If you can decode the message below, your 
teacher will send you the key to decode the second message. In this first stage a virtual handshake is 
established by showing to the sender that the person asking for the key is the intended recipient. In 
RSA public key distribution things are much more complex than in our example, but the analogy is 
helpful to understand this process.

The encoded message is: VZFSYZR UMDXNHX NX FBJXTRJ

Decode the message and tell your teacher to obtain the decryption key for the message below.
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HOW DO WE USE ENCRYPTION KEYS?
If you decoded the previous message your teacher will have given the decryption key for the next activity.

The decryption key is: 

Follow the rules below to convert your key into a binary key:

Every vowel becomes a 1

Every consonant becomes a 0

So, the binary key is: 

Now apply a XOR operation for each character in the encoded binary message below to decode the message by looking up 
the binary letters in the ASCII grid provided.

The XOR operation can be summarised as:

0 0 = 0
0 1 = 1
1 0 = 1
1 1 = 0

So, you will first need to convert each binary 7-digit code into the correct 7-digit binary letter in the encoded message 
below, then convert these into real letters using the ASCII conversion table.
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 Encoded binary message:

11000010  11000111  11010010  11011101  11000111  11000111  11011110

11010000  11010110  11001010  

11010111  11011010  11000000  11000111  11000001  11011010  11010001  11000111  11000111  11011010  11011100  11011101  

Decoded binary message:

_ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   

_ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   

_ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   _ _ _ _ _ _ _ _   

Decoded message in English:

                                         

                 

                                                                       



ASCII conversion table:

Letter ASCII code Binary

A 065 01000001

B 066 01000010

C 067 01000011

D 068 01000100

E 069 01000101

F 070 01000110

G 071 01000111

H 072 01001000

I 073 01001001

J 074 01001010

K 075 01001011

L 076 01001100

M 077 01001101

N 078 01001110

O 079 01001111

Letter ASCII code Binary

P 080 01010000

Q 081 01010001

R 082 01010010

S 083 01010011

T 084 01010100

U 085 01010101

V 086 01010110

W 087 01010111

X 088 01011000

Y 089 01011001

Z 090 01011010
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PUBLIC KEY CRYPTOGRAPHY
In public key cryptography messages are sent in such a way that only the receiver can decode them even when the 
encryption method is discovered by someone who has intercepted the messages. The sender encodes the message using a 
very large number (n) sent by the receiver to establish a secure communication channel. What’s special about n is that it is 
the product of two very large prime numbers, p and q, that only the receiver knows, ie n = pq. 

This method relies on the fact that it is virtually impossible to find the factors of a large number if it has only very large 
prime factors. Even the fastest computer to date would take many thousands of years to find the p and q.

A simple role play

  �A 3-digit prime number is assigned to each student in the class (see list below)

263 241 409 311

373 227 257 449

379 313 347 479

353 389 281 509

397 349 307 331

283 457 421 439

463 251 317 503

499 467 461 233

443 359 293

491 401 223 229

  �Your teacher will send out a large number (n) publicly to everyone.

  �If you are the receiver of the message, dividing n by your 3-digit prime number will return an integer prime number.

  �If you are not the receiver, you will need to try all other numbers until you find the recipient of the message.

Who was the receiver?

The idea is that Bob (the receiver) chooses two (very large) prime numbers, p and q, and then writes n = pq. Then n is used 
to code the message, but p and q are needed to decode the message. The clever bit is that only Bob knows p and q, though 
n is sent out publicly, because deriving p and q from just knowing n is virtually impossible with ordinary computers. 

The problem is that quantum computers will be able to find p and q from any n shared publicly in a matter of minutes, 
leaving any communication that currently uses this method completely exposed to hacking. 
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QUANTUM KEY DISTRIBUTION
The idea behind quantum key distribution is to be able to generate truly random keys that are shared only between the 
sender and receiver. There are different ways to do this. One system, not yet widely used, uses quantum entanglement.  
Entangled photons or particles are generated and their spin is measured independently by both the sender and receiver.  
A. If the measurement of the spin of each particle is measured along the same axis, the receiver (Bob) knows that the 
sender (Alice) will have measured a spin opposite to the spin measured by Bob. B. If the spin is measured by Alice and 
Bob along different axes, the spins will be uncorrelated and those measurements are discarded by both. C. To generate a 
secure key Bob and Alice share publicly which orientations (axes) they used to measure each spin, but they do not share 
their results, because Bob knows that for all the spins measured along the same axes by both, Alice will have measured a 
spin opposite to Bob’s. D. To check that nobody is trying to steal their secret key, Alice and Bob publicly share a few spin 
measurements obtained through the same axis. If they record a number of errors, they know that someone has been trying 
to hack into their communications, because the hacker cannot know in advance the orientation used by Alice and Bob 
in their measurements. If they tried to be a 'man-in-the-middle' it is very, very likely they would emit a particle with the 
wrong spin which Bob would disregard.

Try this simulation https://goo.gl/X4xXTF and answer the questions below. Make sure you read the ‘Introduction’ first and 
look at the ‘Step-by-step explanation’ to gain better understanding of the process. Also, these two videos might help you 
understand quantum entanglement and quantum key distribution better: https://goo.gl/fHWPMf and https://goo.gl/Zp4o4r 

Why does Bob need to invert the values of the outcomes measured along the same orientations as Alice to 
produce his key?

Activate all display controls, set the orientation of the SGA devices to ‘Random orientations’ and allow Eve to 
intercept and resend particles by clicking on the button ‘Eavesdrop!’. Click on ‘Fast forward 100 particle pairs’ and 
click on ‘Let Alice & Bob compare 20 bits for errors’. Make a note of the number of errors found and repeat a few 

times. What did you notice? Can you explain why this happens?
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https://goo.gl/X4xXTF
https://goo.gl/fHWPMf
https://goo.gl/Zp4o4r
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Why isn’t Eve able to resend a particle to Bob always with the correct spin?

Why is it important that Alice and Bob measure each particle independently of each other and choose random 
orientations?

Explain why quantum entanglement ensures the key is shared securely between Alice and Bob.
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