BigPicture

Big Picture: Number Crunching Chi-squared test worked example

Data

A student investigated whether taking vitamin C tablets every day for a school term affected peoples' chances of getting a cold during the period. The results are shown below.

	Vitamin C tablet taken	Vitamin C tablet not taken
Got a cold during the term	15	22
Did not get a cold during the term	100	93

Choose statistical test.

The chi-square test is used when:

- data are nominal (in this case people either got a cold, or did not get a cold)
- the observed number in each category can be compared to an expected number
- none of the expected frequencies is less than five.

State the null hypothesis.

NH^o: Vitamin C does not affect the chance of catching a cold.

State the level of significance.

P = 5 per cent (0.05).

Calculate the expected results.

Assuming the null hypothesis to be true, we would expect the proportion of people taking vitamin C tablets who caught a cold to be the same as the proportion of people not taking vitamin C tablets who caught a cold.

Calculate the totals o	f the rows and columns	in the results table
Calculate the totals o	i the rows and columns	in the results table.

	Vitamin C tablet taken	Vitamin C tablet not taken	Row total
Got a cold	15	22	37
Did not get a cold	100	93	193
Column total	115	115	230

Calculate the proportion of students who caught a cold. Proportion of students who got a cold = 37/230

= 0.16

Calculate the number of students expected to catch a cold and not catch a cold in each sample. We would expect 16 per cent of students taking vitamin C to catch a cold: 18.4 students. We would expect 84 per cent of students taking vitamin C to not catch a cold: 96.6 students. We would expect 16 per cent of students not taking vitamin C to catch a cold: 18.4 students. We would expect 84 per cent of students not taking vitamin C to not catch a cold: 96.6 students.

BigPicture

Calculate the chi-squared value.

Category	Observed (O)	Expected (E)	O-E	Yates' correction* (O–E)–0.5	Square of corrected difference	Square of corrected difference/E
Taak witamin C. aat aald		- 9 4		. , ,		,
Took vitamin C, got cold	15	18.4	-3.4	-3.9	15.21	0.827
Took vitamin C, did not get cold	100	96.6	3.4	2.9	8.41	0.087
Did not take vitamin C, got cold	22	18.4	3.6	3.1	9.61	0.522
Did not take vitamin C,	93	96.6	-3.6	-4.1	16.81	0.174
did not get cold						
Total						1.61

X² = 1.61

*Yates' correction applies for a 2 x 2 table.

What are the degrees of freedom?

DF = (number of rows - 1) x (number of columns - 1)DF = (2-1) x (2-1)DF = 1

Compare the calculated value with the critical value.

Degrees of freedom	Significance level		
	5%	2%	1%
1	3.84	5.41	6.64
2	5.99	7.82	9.21

The critical value of chi-squared at 5% significance and 1 degree of freedom is **3.84**. Our calculated value is **1.61**.

The calculated value is smaller than the critical value at the 5% level of probability.

Conclusion

We cannot reject the null hypothesis, so there is not a significant difference between the observed and expected results at the 5 per cent level of probability.

Students taking vitamin C tablets do not have a significantly different chance of catching a cold compared to students not taking vitamin C tablets.