1301

 to

$$
\begin{aligned}
& \text { SMILE } \\
& \text { AMSWERS } \\
& 1301-1600
\end{aligned}
$$

Answers

1301 to 1600

Other than as permitted by the 108a Lancaster Road Copyright, Design and Patents

This book contains answers to all the SMILE activities between 1301-1600, in numerical order.

As well as giving the answers there are also:

- explanations about how solutions have been arrived at,
- hints or prompts if you get stuck,
- ideas for extending some activities.

Use this book after you have completed each activity, so that you have immediate feedback on your work. You will remember the work more clearly and be able to identify any difficulties or misconceptions more easily. If you have made errors, look through your work again to see if you can spot where you have made an error. If you then do not understand why your answer is incorrect always seek help from your teacher so that she can help you to clarify any mis-understandings.

You can also use this book while you are working on an activity as it contains hints if you get stuck, or want to know how continue.

Remember, using the answer book to check your work or to help you if you are stuck is not cheating.

Show the board to your teacher when you have finished and explain who has won.

1302 Logipuzzle

In the puzzle on the card, 2 attributes change each time but this is not enough information to complete the pattern. You will need to have noticed that:
a) Thick is on top of thin.

Thin is on top of thick.
b) Blue is on top of yellow.

Yellow is on top of red.
Red is on top of blue.
c) Rectangle is on top of circle.

Triangle is on top of rectangle.
Circle is on top of triangle.
d) Small is on top of large.

These rules mean that:
Small thick blue circle should be on top of the large thin yellow triangle.
Small thick yellow rectangle should be on top of the large thin yellow circle.
Show one of your own puzzles that you made up to your teacher.

1303 Paraffins

1. Propane has 8 hydrogen atoms.
2. The formula for propane is $\mathrm{C}_{3} \mathrm{H}_{8}$.
3. Methane

Butane

Ethane

Pentane

1303 Paraffins (cont)

3. (cont)

Name	Carbon atoms	Hydrogen atoms	Formula
Methane	1	4	CH_{4}
Ethane	2	6	$\mathrm{C}_{2} \mathrm{H}_{6}$
Propane	3	8	$\mathrm{C}_{3} \mathrm{H}_{8}$
Butane	4	10	$\mathrm{C}_{4} \mathrm{H}_{10}$
Pentane	5	12	$\mathrm{C}_{5} \mathrm{H}_{12}$
Hexane	6	14	$\mathrm{C}_{6} \mathrm{H}_{14}$

4.

Name	Carbon atoms	Hydrogen atoms	Formula
27	56	$\mathrm{C}_{27} \mathrm{H}_{56}$	

5. To find the number of hydrogen atoms, double the number of carbon atoms and add 2.
The general formula is $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
6. The third pentane isomer is

7. There is only 1 form of methane, ethane and propane.

Butane has 2 isomers:

n-butane

iso-butane

Pentane has 3 isomers (see question 6)
Hexane has 5 isomers.
After this the number of isomers increases rapidly.
Decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$ has 75 isomers.
Eicosane $\left(\mathrm{C}_{20} \mathrm{H}_{42}\right)$ has 366319 isomers.
Only a few of these forms have been isolated but, theoretically, they could all exist. When you count paraffins with many carbon atoms there is a danger of counting the same molecule twice.

The 4 diagrams above all show exactly the same form of hexane.

There are less obvious repeats. Can you see why these show the same form of heptane?

Look at the longest chain (in this case 5 carbon atoms) and see why they are the same:

The details of the isomers of simple paraffins can be found in the Organic Chemistry section of most GCSE science books.
8. To find out about which isomers exist and what their different properties are, you should ask your science teacher to recommend a good chemistry book.

1304 An Honourable Problem

This is one solution.

| A | K | Q | J |
| :--- | :--- | :--- | :--- | :--- |
| Q | J | A | K |
| J | Q | K | A |
| K | A | J | Q |

Can you complete it so that each row column or diagonal has 4 different suits as well?

1305 Factorials!

1. $5!=5 \times 4 \times 3 \times 2 \times 1=120$
2. $6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720$
3. a) $3!+4!=6+24=30$
b) $3!\times 4!=6 \times 24=144$
c) $(3+4)!=7!=5040$
d) $3 \times 4!=3 \times 24=72$
e) $4 \times 3!=4 \times 6=24$
4. a) $\frac{4!}{4}=\frac{4 \times 3 \times 2 \times 1}{4}=6$
b) $\frac{4!}{3}=\frac{4 \times 3 \times 2 \times 1}{3}=8$
c) $\frac{4!}{3!}=\frac{4 \times 3 \times 2 \times 1}{3 \times 2 \times 1}=4$
d) $4!=1$
$4!$
5. $(3!)!=6$!
$=720$
6. The obvious factors of 6 ! are $\{1,2,3,4,5,6\}$.

Any combination of these will also give factors of 6 !
For example $20(4 \times 5), 24(2 \times 3 \times 4)$ and so on.
There are some less obvious factors too. Can you find some of them?
7. $19!$ is even because 2 is a factor of 19 !
8. 3 is a factor of 19 ! as it contains $\ldots \times 3 \ldots$
9. 19! cannot be prime because it has more than two factors.
10. 19 ! is even so $19!+2$ must also be even, therefore it cannot be a prime number.
11. a) There are two zeros at the end of 10 !

These are the result of ' 10 ' and ' $\times 5, \times 2$ ' appearing in the number.
b) There are 6 zeros at the end of 25 !

These are the result of: ... 25 times a factor of 4 (giving two zeros)
... 20 times something
.. . 15 times an even number
... 10 times something
... 5 times an even number
Will there be enough even numbers?
c) In parts (a) and (b) you will have noticed that it is the multiples of 5 which produce zeros. You will need therefore to find all the numbers which contain a factor of 5 .
For 100!

- Multiples of 5 will give a zero when multiplied by an even number.
- Multiples of 25 will give two zeros when multiplied by a multiple of 4.

For 1000! you will also need to consider multiples of 125.

1306 Decimal Estimation

1. How did you guess $24 \div 5$. Did you work it out in your head?
2. 4.8
3. Your guesses to the sums in the table should be similar to the ones given. If you are unsure about your guesses, show them to your teacher.

	GUESS	CALCULATOR
$17 \div 4$	4 and a bit	4.25
$15 \div 4$	nearly 4	3.75
$17 \div 2$	8 and a half	8.5
$25 \div 4$	6 and a bit	6.25
$101 \div 10$	10 and a bit	10.1
$7 \div 2$	3 and a half	3.5
$16 \div 5$	3 and a bit	3.2
$19 \div 5$	just less than 4	3.8
$18 \div 8$	2 and a bit	2.25
$19 \div 8$	2 and a bit more	2.375
$23 \div 3$	nearly 8	7.6666666
$29 \div 7$	4 and a bit	4.1428571

4. The answer should be 24 because multiplication is the inverse of division.

The word inverse is explained on ' 0781 The Inverse'.
5. If you did not get the number you originally divided into by multiplying, check your method with your teacher.

1307 Sections

A sensible way to approach this investigation is to begin with a few simple examples. For instance you could start by looking at vertical lines only.

1 vertical line
2 sections

2 vertical lines 3 sections

3 vertical lines 4 sections

Can you describe the relationship between vertical lines and sections?

Then try 1 horizontal line:

1 horizontal 1 vertical 4 sections

1 horizontal 2 verticals 6 sections

1 horizontal 3 verticals 8 sections

1 horizontal 4 verticals 10 sections

Can you describe the relationships this time?
Then try 2 horizontal lines, 3 horizontal lines, . . .
It is helpful to combine your results in a table.
Horizontal lines

	0	1	2	3	4	5
0						
1	2	4	6			
2	3	6				
3	4	8	12			
4		10				
5						

If you cannot recognise any patterns in the table you will need to draw some more rectangles.

When you have enough numbers in the table you will recognise that it is symmetrical about the leading diagonal. e.g. 2 horizontals and 1 vertical give the same number of sections as 1 horizontal and 2 verticals. Why is this?

Predict how many sections are made by:
0 horizontals and 5 verticals
2 horizontals and 2 verticals?
Can you predict what numbers would be in the ' n horizontals' column?
Can you predict what numbers would be in the 'm verticals' row?
Try to generalise how many sections there will be in a rectangle with ' m ' verticals and ' n ' horizontals.

1308 Problems

A The fish is 72 cm long.
You should have working out for the length of the body and tail.
B Farmer Brown has 5 cows, Farmer Giles has 7 cows.
C 1089

D Brown cows produce more milk.

1309 More Vector Messages

1. $\binom{+1}{+3}$ means $\quad \begin{aligned} & 1 \text { square right } \\ & 3 \text { squares up }\end{aligned} \quad$ from M to I
$\binom{0}{-3}$ means 3 squares down from I to L
$\binom{-3}{+2} \begin{aligned} & \text { means } \\ & \text { means }\end{aligned} \begin{aligned} & 3 \text { squares left } \\ & 2 \text { squares up }\end{aligned} \quad$ from L to E
2. VECTOR CODES ARE EASY
3. In VECTORS the top figure is for right (+) or left (-).
4.

$$
\begin{aligned}
& \binom{-2}{+2}\binom{+3}{-1}\binom{-2}{-1}\binom{+4}{+3}\binom{-2}{-4}\binom{-2}{-1}\binom{-1}{+4}\binom{0}{0}\binom{+1}{-4}\binom{+2}{0}\binom{+2}{+5} \\
& \binom{-4}{-2}\binom{+3}{0}\binom{-2}{0}\binom{-1}{+1}\binom{-1}{-2}\binom{+1}{0}\binom{+4}{+3}\binom{-2}{-5}\binom{-2}{+2}\binom{+2}{0}\binom{-1}{-2}\binom{-2}{+3}\binom{+5}{+2} \\
& \binom{-4}{-1}\binom{-1}{-4}\binom{+5}{+5}\binom{-4}{-5}\binom{-1}{+2}\binom{+5}{+3}\binom{-4}{-4}\binom{0}{-1}\binom{+2}{+4}\binom{-1}{-4}\binom{-3}{+1}
\end{aligned}
$$

1310 Planning a kitchen

Planning a kitchen

- How did you decide on whether there was enough space left for a person to work in the kitchen?
- Did you put the cooker near to a cupboard with a working surface?
- Which items did you leave out of your kitchen?

1310 Planning a kitchen (cont)

How much is your kitchen going to cost?

1. How much did you guess the price would be for a cooker?

Do you think a gas cooker is cheaper than an electric cooker?
2. When you add up all your guesses you do not have to be very accurate, as this is just a rough estimate. A sensible answer would be $£ 200$ or $£ 500$ or $£ 5000$, rather than $£ 203.45$ or $£ 498.60$ or $£ 5205.90$.
3. Your answer will depend upon your choices.
4. Your answer to question 2 will probably be very different to your answer for question 3 because buying kitchen furniture and equipment is only done rarely.
5. Which items did you choose to buy second hand? Were they all electrical?

Your kitchen at home

The measurements will vary from kitchen to kitchen, so you will need to show your work to your teacher.

1311 Sorting Stamps

1. Norway (Norge)
2. 10 ore
3. 80 ore
4. 10 ore, 20 ore, 40 ore, 70 ore, 80 ore.
5. The $\frac{1}{2} p$ stamp is the cheapest, but this was phased out in 1990.
6. 50 p
7. To make sorting easier.
8. The charge for sending parcels and letters through the post depends upon the weight. The heavier the item, the more it costs.

The cheapest British stamp in 1995 is 1 p, the most expensive stamp is $£ 10$. Your answers may be different.

1. $4,7,10,13,16,19,22,25, \ldots$ The rule is add 3
2. $3,5, \quad 7,9,11,13,15,17, \ldots$ The rule is add 2
3. $6,11,16,21,26,31,36,41, \ldots$ The rule is add 5 .
4. $5, \quad 9,13,17,21,25,29,33, \ldots$ The rule is add 4 .
5. $4, \quad 7,10,13,16,19,22,25, \ldots$ The rule is add 3 .
6. $6,11,16,21,26,31,36,41, \ldots$ The rule is add 5.
7. $5, \quad 9,13,17,21,25,29,33, \ldots$ The rule is add 4.

1313 Match Patterns

1. $4,12,24,40,60,84, \ldots$
2. $3,9,18,30,45,63, \ldots$
3. $6, ~ 16, ~ 30, ~ 48, ~ 70, ~ 96, ~ \ldots$
4. $6, \quad 18,36,60,90,126, \ldots$

1315 International Paper Sizes

1.

Paper Size	Width (mm)	Length (mm)	Area $\left(\mathrm{mm}^{2}\right)$	Length $\mathbf{+}$ width
A7	74	105	7770	1.42
A6	105	148	15540	1.41
A5	148	210	31080	1.42
A4	210	297	62370	1.41
A3	297	420	124740	1.41
A2	420	594	249480	1.41
A1	594	841	499554	1.42
A0	841	1189	999949	1.41

2. a) Each successive size doubles in area.
b) Some of the successive areas are exactly double but not all. e.g. twice the area of A2 does not exactly equal the area of A1. This is because the length of A1 (to the nearest mm) is slightly more than double the width of A2 (to the nearest mm).
c) The length and width are given to the nearest mm. They are not exact measurements. Therefore the area is not exactly $1 \mathrm{~m}^{2}\left(1000000 \mathrm{~mm}^{2}\right)$.
3. a) The ratio, length \div width, remains approximately the same.
b) The front of the card will give you a hint on how to arrange the pieces.
c) $\sqrt{2}=1.41$ correct to 2 decimal places. Your results should be close to 1.41 .

1316 Halving

1. Original line (cm) 5
halved
2.5
halved again $\quad 1.25$
halved again 0.625
halved again 0.3125
0.15625
0.078125
$0.0390625 \ldots$
0.0390625 may look bigger than 5 because it has more digits.

This 5 means $\frac{5}{10000000}$ whilst this 5 means 5 'whole ones'.
a) 5
b) 2.5
c) 0.3125
d) 0.625
2. Original number 4
halved 2
halved again $\quad 1$
and again 0.5
0.25
0.125
0.0625
0.03125 . . .
a) 0.5
b) 0.125
c) 1
d) 0.25
3. Original line 10 times smaller 10 times smaller

20
2
0.2
0.02
0.002
0.0002
0.00002 . .

If you did need to use a calculator can you now see a method for dividing by 10 in your head?
a) 2
b) 0.2
c) 0.002
4. a) 0.75
b) 0.1875
c) 1.5
d) 0.75

1317 Multiplying and Dividing by Ten

- Multiply by 10

Th	H	T	U t	h	th	
	7	7 6	$\begin{aligned} & 6 \text {. } \\ & 0 \text {. } \end{aligned}$			
	2	2	5 3			
		6	6 $7 \cdot 7$	2	3	
		5	5.			
			0. 0	0	2	1
9	9	7 0	0 0.			
	8	8 3	3. 2			
	1	1 8	8• 4	2	3	
			0. 2	0	6	
	1	1 2	2.			

You should notice that all the figures move one place to the left.
Get someone else to check that your own five numbers follow the rule:
Multiplying by 10 moves the figures one place to the left.

1317 Multiplying and Dividing by Ten (cont)

- Divide by 10

Th	H	T	U t	h	th		
		7	$\begin{array}{ll} 6 \cdot 6 \end{array}$				
		2	5. 3	3			
			6•7	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	3	
			5 0				
			$0 \cdot 0$ 0.0	0	2	1	1
	9	7 9	7.				
		8	3. 2	2			
		1	8. 4	2	3 2	3	
			0. ${ }^{\text {0 }}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	6	
		1	2. 2				

You should notice that all the figures move one place to the right.
Get someone else to check that your own five numbers follow the rule:
Dividing by ten moves the figures one place to the right.

- Multiply by $\mathbf{1 0 0}$

Th	H	T	$\mathrm{U} \quad \mathrm{t}$	h	th		
7	6	7 0	$\begin{aligned} & \hline 6 \\ & 0 \\ & \hline \end{aligned}$				
2	5	3	$5: 3$				
	6	7	$6 \cdot 7$ $2 \cdot 3$	2	3		
	5	0	5 .				
		\therefore					

You should notice that all the figures move two places to the left.
Get someone else to check that your own five numbers follow the rule:
Multiplying by one hundred moves the figures two places to the left.

1317 Multiplying and Dividing by Ten (cont)

- Divide by 100

Th	H	T	$\mathrm{U} \quad \mathrm{t}$	h	th		
		7	6 0	6			
		2	5 . 3	5	3		
			6 : 7	2	3	2	3
		$\stackrel{\square}{\bullet}$					

You should notice that all the figures move two places to the right.
Get someone else to check that your own five numbers follow the rule:
Dividing by 100 moves the figures two places to the right.

- When multiplying by 1000 all the figures move three places to the left.
- When dividing by 1000 all the figures move three places to the right.

Copy this summary of your work.

- When multiplying by 10 all the figures move one place to the left.
- When multiplying by 100 all the figures move two places to the left.
- When multiplying by 1000 all the figures move three places to the left.
- When multiplying by 10000 all the figures move four places to the left.
- When dividing by 10 all the figures move one place to the right.
- When dividing by 100 all the figures move two places to the right.
- When dividing by 1000 all the figures move three places to the right.
- When dividing by 10000 all the figures move four places to the right.

1318 Square Cover

There are separate results for odd and even squares.

- Even squares e.g. 4×4 square.

You can start from any of the 16 small squares and cover the complete board.

- Odd squares e.g. 5×5 square.

You can start from any of the 13 shaded squares but not from the 12 unshaded squares if you want to cover the complete board.
Make a table of your results and try to find a general rule.
When you have a general rule for squares you may like to move on to investigate rectangles. Try rectangles which are:

- even x even e.g. 6×4
- odd x odd e.g. 5×3
- even \times odd e.g. 6×3

Can you find a general rule?

Can you justify your general rules?

- e.g. with the even squares you can show that there is always a continuous path through the square.
So it must be possible to start at any small square.

1319 Consecutives

- $\quad 6 \times 7 \times 8$ is divisible by 24 .

Which other sets of three consecutive numbers when multiplied together are divisible by 24 ? Can you explain why? Does your explanation cope with examples like $7 \times 8 \times 9$?

You may like to use a spreadsheet. Here is the beginning of a spreadsheet to see the results of the product of three consecutive numbers which are divisible by 24.

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	
$\mathbf{1}$	n	$n+1$	$n+2$	$n(n+1)(n+2)$	$n(n+1)(n+2) / 24$
2	1	2	3	6	0.25
3	2	3	4	24	1
4	3	4	5	60	2.5
5	4	5	6	120	5

Why is one of the three consecutive numbers always a multiple of 3 ?

1319 Consecutives (cont)

Change the formula in the spreadsheet to see which products of consecutives are divisible by 20.

Try the product of four consecutive numbers.

- Which are divisible by 24 ?
- Which are divisible by 120 ?

Justify you findings.

- What can you say about the factors of the product of any set of four consecutive numbers?

Try five consecutive numbers.

1320 Rectangle Areas

1. $28 \mathrm{~cm}^{2}$
2. $65 \mathrm{~cm}^{2}$
3. $45 \mathrm{~m}^{2}$
4. $78 \mathrm{~m}^{2}$
5. $22.5 \mathrm{~m}^{2}$
6. $2 \mathrm{~km}=2000 \mathrm{~m}$. So the area is $160000 \mathrm{~m}^{2}$.
7. Area of whole shape $=$ Area $A+$ Area B

$$
\begin{aligned}
& =(4 \mathrm{~m} \times 3 \mathrm{~m})+(3 \mathrm{~m} \times 2 \mathrm{~m}) \\
& =12 \mathrm{~m}^{2}+6 \mathrm{~m}^{2} \\
& =18 \mathrm{~m}^{2}
\end{aligned}
$$

8. Area of whole shape $=(6 \mathrm{~cm} \times 7.5 \mathrm{~cm})+(3 \mathrm{~cm} \times 2 \mathrm{~cm})$

$$
\begin{aligned}
& =45 \mathrm{~cm}^{2}+6 \mathrm{~cm}^{2} \\
& =51 \mathrm{~cm}^{2}
\end{aligned}
$$

9. Area of whole shape $=(2 \mathrm{~cm} \times 10 \mathrm{~cm})+(4.2 \mathrm{~cm} \times 2 \mathrm{~cm})$

$$
\begin{aligned}
& =20 \mathrm{~cm}^{2}+8.4 \mathrm{~cm}^{2} \\
& =28.4 \mathrm{~cm}^{2}
\end{aligned}
$$

10. Area of whole shape $=(9 \mathrm{~m} \times 11 \mathrm{~m})+(7 \mathrm{~m} \times 4 \mathrm{~m})+(6 \mathrm{~m} \times 8 \mathrm{~m})$

$$
\begin{aligned}
& =99 \mathrm{~m}^{2}+28 \mathrm{~m}^{2}+48 \mathrm{~m}^{2} \\
& =175 \mathrm{~m}^{2}
\end{aligned}
$$

You may have split the shape up into different rectangles, but your answer should be the same.
11. Area of whole shape $=(10 \mathrm{~m} \times 5.2 \mathrm{~m})-(3 \mathrm{~m} \times 2 \mathrm{~m})$

$$
\begin{aligned}
& =52 \mathrm{~m}^{2}-6 \mathrm{~m}^{2} \\
& =46 \mathrm{~m}^{2}
\end{aligned}
$$

12. Area of whole shape $=(7 \mathrm{~cm} \times 11.3 \mathrm{~cm})-(3 \mathrm{~cm} \times 3.5 \mathrm{~cm})$

$$
\begin{aligned}
& =79.1 \mathrm{~cm}^{2}-10.5 \mathrm{~cm}^{2} \\
& =68.6 \mathrm{~cm}^{2}
\end{aligned}
$$

1321 Prism or Pyramid?

Nets B and C make pyramids, and nets A and D make prisms.

1322 Solid Shapes

1. The cube has 6 faces.
2. The cube has 8 corners.
3. The cube has 12 edges.
4. Here are some of the solid shapes that you may have in your table.

SHAPE	FACES	CORNERS	EDGES
CUBE	6	8	12
TETRAHEDRON	4	4	6
CYLINDER	2	0	2
SQUARE PYRAMID	5	5	8
TRIANGULAR PRISM	5	6	9
CUBOID	6	8	12
SPHERE	1	0	0

If your answers are different, check with your teacher.
6. The cylinder and the sphere have no corners.

1323 Tak-Tile Areas

1. The area of the small circle is $\frac{c}{4}$.
2.

1323 Tak-Tile Areas (cont)

$3 \& 4$. The total area is $16 s+c$.
You can either:

- look at the whole shape which has area $16 s+4 \frac{c}{4}=16 s+c$
or
- add all the tiles:
$(2 s)+\left(3 s-\frac{c}{4}\right)+\left(s+\frac{7 c}{16}\right)+\left(2 s+\frac{3 c}{16}\right)+\left(4 s-\frac{c}{2}\right)+\left(s+\frac{c}{2}\right)+\left(2 s+\frac{c}{8}\right)+\left(s+\frac{c}{2}\right)$
Total area $=16 \mathrm{~s}+\mathrm{c}$

5. Total area $=16 \mathrm{~s}+\mathrm{c}$

$$
\begin{aligned}
& =16 r^{2}+\pi r^{2} \\
& =r^{2}(16+\pi)
\end{aligned}
$$

6. $r^{2}=s$
$\mathrm{r}^{2}=\frac{\mathrm{c}}{\pi} \quad$ (Rearranging $\mathrm{c}=\pi \mathrm{r}^{2}$)
Therefore $s=\frac{c}{\pi}$

1324 Pegboard Sums

$4+3=7$
$1+2=3$
$3+3=6$
Get someone else to check your own sums.

1325 Sums on the Balance

$5+3=8$
$5+1=6$
Get someone else to check your own sums.

1326 Running Costs

- Most electricity bills consist of cost per unit, VAT and standing charges.

Were there items on the bill that were different?

- The appliances which cost the most are washing machines, tumble driers and room heaters.
- There are many ways to save money in order to reduce the electricity bill. One way would be to use a cool wash. Discuss your answers with someone else, as they may be able to think of other ways.

Which room contained the most electrical appliances?

1327 Visiting the LEB

1. Your answers will vary from place to place.
2. Did you plan your journey from the school or from your home?
3. Make a display of the group's work.
4. Were you able to wire up a plug?

1328 Room to Move

- When you record the measurements of the greatest height that you can reach when sitting on the chair, remember that a disabled person may be unable to stretch so far.

Which things were you able to reach?
Most light switches and door handles are at a suitable height for disabled people to reach.

- Is your school designed so that pupils confined to a wheelchair:
a) have enough room to move around in a mathematics lesson?
b) are able to get all their SMILE cards?
c) are able to get to the equipment?
- Many public buildings now provide special facilities for disabled people.

What facilities do they have?
Can you give examples of shops and other public buildings which provide these facilities?

1329 Journeys

1.

1329 Journeys (cont)

2. Here are 4 two-stage journeys which start at A and finish at B.

Your answers may be different.

3. Here are some possible results.

Journey A to B		
Direct Vector	Two Stage Journey	
$\binom{6}{6}$	$\binom{4}{1}$	$\binom{2}{5}$
$\binom{6}{6}$	$\binom{3}{3}$	$\binom{3}{3}$
$\binom{6}{6}$	$\binom{-1}{7}$	$\binom{7}{-1}$
$\binom{6}{6}$	$\binom{0}{-2}$	$\binom{6}{8}$
$\binom{6}{6}$	$\binom{6}{5}$	$\binom{0}{1}$

If you are uncertain about your results, show them to your teacher.
4. Each of the sets of two vectors add to give $\binom{6}{6}$, the direct vector.
5. The vector $\binom{3}{-2}$ describes the journey 3 squares right and 2 squares down.
6. Many possible answers.
7. Each of the sets of three vectors add to give $\binom{7}{5}$, the direct vector.
8. Many possible answers.
9. The set of vectors for each journey from E to F should add to $\binom{0}{6}$, the direct vector.
10. If you are uncertain about your results, show them to your teacher.
11. If you are uncertain about your results, show them to your teacher.

1330 Planning a Supermarket

1. 1 doz eggs $\longrightarrow 1$ large tin peaches $\longrightarrow \frac{1}{2} \mathrm{~kg}$ rice $\longrightarrow 40 \mathrm{z}$ coffee 1 large white loaf $\longleftarrow 1$ fresh pineapple $\longleftarrow \underbrace{\frac{1}{2}} \mathrm{lb}$ butter $\longleftarrow 1$ tin dog food
2. Many possible answers. If each member of your group went to a different supermarket, were the plans very similar?
3. The order of the shopping list will depend on your local supermarket.
4. The way in which supermarkets display their goods is planned to encourage shoppers to buy more.
5. Make a display of your plan for a supermarket. What factors did you take into account when making your plan?

1331 Equal Angles

Page 1 - What are equal angles?

Page 2 - Pairing angles

$\hat{\mathrm{A}}=\hat{\mathrm{G}} \quad$ This means \rightarrow angle A equals angle $\mathrm{G} \rightarrow$ or it can be written as $\angle \mathrm{A}=\angle \mathrm{G}$.
$\hat{\mathrm{B}}=\hat{\mathrm{J}} \quad$ This means \rightarrow angle B equals angle $\mathrm{J} \rightarrow$ or it can be written as $\angle \mathrm{B}=\angle \mathrm{J}$.
$\hat{\mathrm{C}}=\hat{\mathrm{M}} \quad$ This means \rightarrow angle C equals angle $\mathrm{M} \rightarrow$ or it can be written as $\angle \mathrm{C}=\angle \mathrm{M}$.
$\hat{\mathrm{D}}=\hat{\mathrm{K}} \quad$ This means \rightarrow angle D equals angle $\mathrm{K} \rightarrow$ or it can be written as $\angle \mathrm{D}=\angle \mathrm{K}$.
$\hat{\mathrm{E}}=\hat{\mathrm{F}} \quad$ This means \rightarrow angle E equals angle $\mathrm{F} \rightarrow$ or it can be written as $\angle \mathrm{E}=\angle \mathrm{F}$.
$\hat{\mathrm{F}}=\hat{\mathrm{E}} \quad$ This means \rightarrow angle F equals angle $\mathrm{E} \rightarrow$ or it can be written as $\angle \mathrm{F}=\angle \mathrm{E}$.
$\hat{\mathrm{G}}=\hat{\mathrm{A}} \quad$ This means \rightarrow angle G equals angle $\mathrm{A} \rightarrow$ or it can be written as $\angle \mathrm{G}=\angle \mathrm{A}$.
$\hat{\mathrm{H}}=\hat{\mathrm{L}} \quad$ This means \rightarrow angle H equals angle $\mathrm{L} \rightarrow$ or it can be written as $\angle \mathrm{H}=\angle \mathrm{L}$.
$\hat{\mathrm{J}}=\hat{\mathrm{B}} \quad$ This means \rightarrow angle J equals angle $\mathrm{B} \rightarrow$ or it can be written as $\angle \mathrm{J}=\angle \mathrm{B}$.
$\hat{\mathrm{K}}=\hat{\mathrm{D}} \quad$ This means \rightarrow angle K equals angle $\mathrm{D} \rightarrow$ or it can be written as $\angle \mathrm{K}=\angle \mathrm{D}$.
$\hat{\mathrm{L}}=\hat{\mathrm{H}} \quad$ This means \rightarrow angle L equals angle $\mathrm{H} \rightarrow$ or it can be written as $\angle \mathrm{L}=\angle \mathrm{H}$.
$\hat{\mathrm{M}}=\hat{\mathrm{C}} \quad$ This means \rightarrow angle M equals angle $\mathrm{C} \rightarrow$ or it can be written as $\angle \mathrm{M}=\angle \mathrm{C}$.

1331 Equal Angles (cont)

Page 3 - Marking angles equal

Page 4 - Numbering angles
(\%)= (\%)
(3) $=6=$
$(\#=8=2$
(5)= $11=$

Page 5-Zig-zags
$\hat{\mathrm{H}}=\hat{\mathrm{L}}=\hat{\mathrm{D}}=\hat{\mathbf{P}}$
$\hat{\mathbf{A}}=\hat{\mathbf{C}}=\hat{\mathbf{G}}=\hat{\mathbf{N}}$
$\hat{\mathbf{Q}}=\hat{\mathbf{B}}=\hat{\mathbf{F}}=\hat{\mathbf{J}}$
$\hat{\mathrm{E}}=\hat{\mathbf{K}}=\hat{\mathbf{M}}=\hat{\mathbf{R}}$

1331 Equal Angles (cont)

Page 6 - Right angles

Page 7 - More difficult diagrams
a) $3=4=8$
$(2)=6$
(\%) $=7$
b)
$(2=5=6=7$
$(3)=4$
(\#) $=8$
c)
$(3)=2=10=11$
$5=8=1$
(7) $=6$
$(9)=4$
continued/

1331 Equal Angles (cont)

Page 8 - Adjacent angles

Page 9 - Using numbers

a) $(4=1=7$
$5=3=8$
(5) $=9$
b) $5=(1=8$
$(4=6=7$
(3) $=2$
c) $3=2=(1$
$(4)=5$
(6) $=7$

Page 10 - Naming angles
Names of angle at H are: JĤL L̂̀J JHK K̂̀J
List of equal angles are: $\mathrm{H} \hat{\mathrm{J}}=\mathbf{L K} \mathbf{J}$
$\mathbf{L H J}=\hat{\mathrm{J} K}$
HL̂J $=\hat{\mathbf{K} \mathbf{J}}=\mathbf{H} \hat{\mathbf{J} K}$
Target test - Standard

1. Ŝ̂R RQ̂S PQ̂R R̂̂P
2. $\mathrm{P} \hat{\mathrm{Q} R}=\hat{Q R S}=\hat{R} P$
$\hat{Q P R}=\hat{Q} \hat{R} P=P \hat{S} R$

1331 Equal Angles (cont)

3. $4=2=14=7=8=12$
$5=1=10=11$
$6=15=16=3$
$13=9$

Target test - Advanced

1. $\hat{P Q Q U}=\hat{P S T}=\hat{T Q R}$

UQ̂S $=\hat{S R U}=T \hat{P} U$
$\hat{P T U}=\hat{U S Q}=\hat{Q R U}$
2. $5=11=14$
$1=9$
$3=6$
$4=15$
$7=10$

1332 Rotation

Page 1 - Turning a wheel

Amount of rotation		G	G	D	A
Valve starts at F and rotates to:	X	G	B		

Page 2 - Direction of rotation

The hands of a clock	C
Playing a record	C
Turning on the cold tap	A
Drilling a hole in wood	C
Traffic at a roundabout	C
Taking the cap off toothpaste	\mathbf{A}
Steering a car to the left	\mathbf{A}
Stirring porridge	\mathbf{A} or \mathbf{C}
Bath water down the plug hole	\mathbf{A} or \mathbf{C}

1332 Rotation (cont)

Page 3 - The Big Wheel

Which amount of rotation would take:	
Bob to the bottom?	3
Dick to the top?	5
Bob to the top?	7
Dick to the bottom?	1
Bob directly below Dick?	4
Dick directly below Bob?	8
Bob and Dick to the same level?	2
	6

Page 4 - A rotation code

| Message | uncoded | WHAT | TIME | IS | THE | LANDING | TONIGHT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | coded | FYLN | NVXH | VA | NYH | OLCTVCZ | NKCVZYN |
| Answer | coded | YLOM | LC | YKRB | PHMKBH | YVZY | NVTY |
| | uncoded | HALF | AN | HOUR | BEFORE | HIGH | TIDE |

Get someone else to uncode your message.
Page 5 - The hands of a clock

Amount of rotation:						
Time taken by:	hour hand	2 hours	6 hours	5 hours	10 hours	18 hours
	minute hand	10mins	30mins	25mins	50mins	90mins

Page 6 - Big rotations

Number of revolutions

from	to	minute hand	second hand
2.00	4.00	2	120
6.30	9.30	3	180
8.20	1.20	5	300
3.00	5.30	$2^{\frac{1}{2}}$	150
8.15	9.45	$1^{\frac{1}{2}}$	90
10.10	10.25	$\frac{1}{4}$	15
1.00	2.45	$1^{\frac{3}{4}}$	105

1332 Rotation (cont)

Page 7-Small rotations

smallest first

G	20°
\mathbf{B}	30°
\mathbf{A}	60°
D	80°
C	130°
\mathbf{H}	170°
E	220°
F	280°

biggest last

Page 8 - Practical examples of rotation

Closing lid of box	105°
Closing pliers	15°
Movement of seesaw	40°
Closing door	110°
Folding stepladder	40°
Speedo needle from 0 to 70	105°
Turning switch to high	300°
Falling tree	90°

Page 9 - Clockface angles

Starting time	9.05	2.21	7.43	3.59	6.05
Final time	9.27	2.56	8.32	4.15	7.10
Rotation of minute hand	3				

1332 Rotation (cont)

Page 10 - Estimating rotations

Your answers may differ to these, but if you are unsure, check your own answers with your teacher.

Opening coffee jar	220°
Opening sardine tin	1000°
Switching on light	60°
Using bicycle brake	30°
Dialling 9	300°
Using corkscrew	1200°
Turning door handle	70°
Turning on tap	950°

Target test - Standard

1.

A 90° clockwise
B 120° anticlockwise
C 30° clockwise
D $\quad 0^{\circ}$
E 45° clockwise
F 45° anticlockwise
G 60° anticlockwise
2. D, A, F, E, G, C, B, H.
3. 156

Target test - Advanced

1. a) 120°
b) 150°
c) 45°
2. a) 3 hours
b) 2 minutes, 10 seconds.
3. A 180° approximately

B 90° approximately
C 150° approximately
D 250° approximately

1333 Directions

Page 1 - Directions

Page 2 - Compass directions

Inverness	is north of	Glasgow
Carlisle	is south of	Dundee
Oban	is west of	Dundee
Carlisle	is east of	Stranraer
Edinburgh	is NW of	Newcastle
Stranraer	is SW of	Edinburgh
Aberdeen	is NE of	Glasgow
Glasgow	is SE of	Oban

Page 3 - Name the girls

Who sits: north of J?	D
east of P ?	Q \& R
south of R?	X
west of T?	S
southwest of O ?	T
northeast of V ?	Q \& L
northwest of Q ?	J \& C
north of M and west of J ?	G
E of H and NE of U ?	K
SE of C and SW of L?	Q

1333 Directions (cont)

Page 4 - Directions from Bedford

From Bedford the bearing of:	is:
Cambridge	080°
London	160°
Peterborough	015°
Aylesbury	210°
Oxford	230°
Birmingham	290°
Southend	130°
Kings Lynn	040°
Grantham	350°

Page 5 - Finding your bearings

- The bearing of B from A is 070°
- The bearing of A from B is 250°

From:	the bearing of:	is:
Bedford	Cambridge	080°
Cambridge	Bedford	260°
Oxford	Bristol	250°
London	Cambridge	011°
Birmingham	Derby	030°
Kings Lynn	Boston	310°
Swindon	Kings Lynn	050°

Page 6 - A stretch of coast

letter	Name from map
A	Radio Mast
B	Eagle Crag
C	Monument
D	Church
E	Yacht Club
F	Raven Tower
G	Costguard Lookout Post
H	Lighthouse

1333 Directions (cont)

Page 7 - Looking through a telescope

The bearing of the Coastguard from the radio mast is wrong. It should be 130°.

From Raven Tower the bearing of:	is:
Eagle Crag	030°
Church	050°
Monument	065°
Yacht Club Flagstaff	070°
Coastguard	085°
Lighthouse	095°
Radio Mast	355°

Page 8 - View from the radio mast

From the lighthouse the bearing of:	is
Raven Tower	270°
Coastguard	280°
Radio Mast	295°
Church	300°
Eagle Crag	315°
Factory	335°
Yacht Club Flagstaff	345°
Monument	015°

Page 9 - Drawing a panorama

Page 10 - Puzzling panoramas

continued/

1333 Directions (cont)

This panorama was drawn from the monument.

Target test - Standard
1.

品	${ }^{\circ}$		
A	C	S	180°
C	A	N	000 ${ }^{\circ}$
A	B	SE	135°
B	A	NW	315°
B	C	SW	225°
C	B	NW	045 ${ }^{\circ}$
C	D	W	270°
D	C	E	090 ${ }^{\circ}$

2.

Target test - Advanced

$\begin{aligned} & \text { E } \\ & \text { 足 } \end{aligned}$	-	$\begin{aligned} & \text { E. } \\ & \text { H } \\ & \text { U. } \\ & 0.0 \end{aligned}$	
A	X	W	270°
D	X	NW	315°
Y	B	N	000°
Y	C	NW	315°
Z	C	SE	135°
Z	D	S	180°
Z	A	NE	045 ${ }^{\circ}$
Z	B	E	090 ${ }^{\circ}$

C, A, D, B, E, H, G
D
G, F,
C,
D,
A,
B, E

1334 Recognising Solids

Page 1 - Join the dots and ${ }^{\frac{1}{2}} \mathrm{~cm}$ isometric paper
Show your isometric drawings to your teacher.
Page 3 - Find the pairs
$\mathrm{A}=\mathrm{I}$
$\mathrm{B}=\mathrm{N}$
$\mathrm{C}=\mathrm{J}$
$\mathrm{D}=\mathrm{O}$
$\mathrm{E}=\mathrm{K}$
$\mathrm{F}=\mathrm{M}$
$\mathrm{G}=\mathrm{L}$
$\mathrm{H}=\mathrm{P}$
$\mathrm{I}=\mathrm{A}$
$\mathrm{J}=\mathrm{C}$
$\mathrm{K}=\mathrm{E}$
$\mathrm{L}=\mathrm{G}$
$\mathrm{M}=\mathrm{F}$
$\mathrm{N}=\mathrm{B}$
$\mathrm{O}=\mathrm{D}$
$\mathrm{P}=\mathrm{H}$

Page 4 - Using the 25 -board

Show your isometric drawings to your teacher.

Page 5 - Extra lines

Page 6 - Building on the 25-board You should have drawn two of these.

Page 7 - Missing lines

continued/

1334 Recognising Solids (cont)

Page 8 - Shading the L-block

Page 9 - Shadows

Page 10 - Splitting into cubes

Target test - Standard
1.

2. $\mathrm{A}=\mathrm{I}, \mathrm{B}=\mathrm{D}, \mathrm{C}=\mathrm{G}, \mathrm{D}=\mathrm{B}, \mathrm{E}=\mathrm{H}, \mathrm{F}=\mathrm{J}, \mathrm{G}=\mathrm{C}, \mathrm{H}=\mathrm{E}, \mathrm{I}=\mathrm{A}, \mathrm{J}=\mathrm{F}$.
3.

Target test - Advanced
1.

2. $\mathrm{A}=\mathrm{I}, \mathrm{B}=\mathrm{D}, \mathrm{C}=\mathrm{G}, \mathrm{D}=\mathrm{B}, \mathrm{E}=\mathrm{H}, \mathrm{F}=\mathrm{J}, \mathrm{G}=\mathrm{C}, \mathrm{H}=\mathrm{E}, \mathrm{I}=\mathrm{A}, \mathrm{J}=\mathrm{F}$.
3. You should have drawn two of these.

1335 Sketching Solids

Page 1 - Five cubes

You should have drawn two of these.

Page 2 - The S and L on the 25-board

These show the same solid from the 3 different directions. You should have sketched one of these.

These show the same solid drawn from 4 different directions. You should have sketched one of these.

Page 3 - Single layer solids

Page 4 - Thick letters

There are two ways to make the letters "thick".
Here is one of the answers.

Page 5 - Take away a cube You should have drawn three of these.

There were 4 cubes.

There were 7 cubes.

There were 5 cubes.

There were 6 or 7 cubes.

There were 6 cubes.

There were 8 cubes.

continued/

1335 Sketching Solids (cont)

Page 6 - Add a cube

You should have drawn two of these.

Page 7-Two cubes less
You should have drawn three of these.
There were 12 cubes

There were 8 cubes.

There were 8 cubes.

There were 12 cubes.

There were 6 cubes.

Page 8 - Two cubes more

Page 9-A 25-board puzzle
You should have drawn two of these.

Page 10 - Making Solids

Many possible answers. Get someone else to check your drawings if you are not sure whether they are correct.

1335 Sketching Solids (cont)

Target test - Standard

1. You should have drawn two of these.

2. You should have drawn two of these.

Target test - Advanced

1. You should have drawn two of these.

2. You should have drawn two of these.

1336 Turning and Toppling

Page 1 - Toppling

You should have drawn two of these.

continued/

1336 Turning and Toppling (cont)

Page 2 - Turning solids round

You should have drawn one of these solids in the three positions.

Page 3 - Toppling on the 25 - board Solid toppled about line x.

Page 4 - Turning the 25 - board You should have sketched one of these.
a)

b)

continued/

1336 Turning and Toppling (cont)

Page 5 - Double Topple

Toppled about the line x and then about the line y.

Toppled about the line y and then about the line x.

The results are different.

a)

b)

Page 7 - Spot the turns and topples

	Starting position	Final position	Name of Change
Example	(6)	(4)	quarter turn
1.	(1) or 4	(5) or 3	topple to right \nearrow
2.	(6) or 2	(1) or 4	topple to left \nwarrow
3.	(2) -	\rightarrow (5)	half turn
4.	(1)	(3)	quarter turn
5.	(1) or 4	(5) or 3	topple to right \nearrow
6.	(6) or 2	(1) or 4	topple to left \nwarrow

Page 8 - More toppling

a) Toppled about line x.

Page 9 - Turn again

a) A quarter turn clockwise

Page 10 - Another Double Topple

The final positions are not the same.

Target test - Standard

1.

b) Toppled about line y.

b) A half turn

continued/

1336 Turning and Toppling (cont)
3.

5.

Target test - Advanced
1.

4.

2.

3.

Page 1 - Reflections in a mirror

Page 2 - Double the object

2.

3.

Page 3-25-board and mirror
1.

2.

Page 4 - Diagonal mirror

continued/

Page 5 - Sitting on a mirror

You should have drawn one of these.
2.

Page 6-A mirror behind

2.

Page 7 - Building a reflection

Page 8 - Solids on a mirror

You should have drawn two of these.
1.

2.

3.

Page 9 - More difficult solids

You should have drawn two of these. In some cases it is possible to arrange the starting solids in more than one way. If so, your answers may be different. Show your answers

3.

Page 10 - Two mirrors

You should have drawn two of these.

Target test - Standard

You should have drawn three of these.
a)

b)

c)

d)

Target test - Advanced
a)

b)

d)
c)

Page 1 - How to draw a wedge
You may have drawn different wedges.

Page 2 - Making solids
You should have drawn three of the solids.

Page 3 - Find the pairs

$$
\begin{aligned}
& \mathrm{A}=\mathrm{G} \\
& \mathrm{~B} \\
& \mathrm{C}=\mathrm{I} \\
& \mathrm{D}=\mathrm{N} \\
& \mathrm{E}=\mathrm{M} \\
& \mathrm{~F}=\mathrm{P} \\
& \mathrm{H}=\mathrm{L} \\
& \mathrm{~K}=\mathrm{J} \\
& \mathrm{~K}
\end{aligned}
$$

Page 4 - From plan to sketch
You should have sketched three of these.

Page 5 - Make and draw
You should have sketched at least four different solids using a wedge and a long.
Page 6 -Turning the board
You should have drawn two of these.
a) a quarter turn
b) a half turn

continued/

Page 6-Turning the board (cont)
a) a quarter turn clockwise (you may have turned anticlockwise)

a) a quarter turn clockwise (you may have turned anticlockwise)

a) a quarter turn clockwise (you may have turned anticlockwise)

b) a half turn

b) a half turn

b) a half turn

Page 7 - Reflections
You should have drawn two of these.

continued/

1338 Wedges (cont)

Page 8 - Topple

You should have drawn two of these.

Page 9-Horizontal mirror
You should have sketched two of these.

Page 10 - Double topple
a) first about line x then about line y
b) first about line y then about line x.

a) first about line x then about line y

b) first about line y then about line x.

1338 Wedges (cont)

Target test - Standard

You should have drawn one set of these solids.
a) a quarter turn clockwise

b) toppled about the line x

c) mirror put on line x

d) toppled about line y

e) mirror on line y

1338 Wedges (cont)

Target Test - Advanced

You should have drawn one set of these solids.
a) a quarter turn anticlockwise

b) toppled about the line x

c) mirror put on line x

d) toppled about line y

e) mirror on line y

1339 Flags

Page 1 - Flags and number mappings

The OUT number is 18 .

$(4) \xrightarrow{\frac{x 5}{\rightarrow}}$
$(10) \xrightarrow{\frac{[54}{\rightarrow}} 6$
$(3) \xrightarrow{\frac{\pi}{4}}(5$

Page 2 - Double flags

Page 3 - Three number machine The OUT number is 23 .

1339 Flags (cont)

Page 4 - Puzzle page

You should have found five of these six possible ways.

You should have found six of these eleven possible ways.

(8)

16

Page 5 - Going backwards

The IN number is 2 .

Page 6 - Machines in reverse

Page 7 - Inverse operations

Page 8 - Two-stage operations
Flag Diagram
Flags pointing left

(9)

Inverse Operation Program
Subtract 3, then divide by 2.

Divide by 2, then subtract 3.

Subtract 15, then multiply by 3.

Multiply by 3, then subtract 15.

Page 9 - Understanding inverses

Page 10-Celsius and Fahrenheit
Water freezes at $32^{\circ} \mathrm{F}$

Celsius	Fahrenheit
$100^{\circ} \mathrm{C}$	$212^{\circ} \mathrm{F}$
$75^{\circ} \mathrm{C}$	$167^{\circ} \mathrm{F}$
$50^{\circ} \mathrm{C}$	$122^{\circ} \mathrm{F}$
$25^{\circ} \mathrm{C}$	$77^{\circ} \mathrm{F}$
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$

The program for the machine is, 'subtract 32 , divide by 9 , then multiply by 5^{\prime}.

Target test - Standard

1. \& 2 .

2.

A

B

4. The inverse program for A is 'divide by 3 '.

The inverse program for B is 'divide by 2 , then subtract 5 '.
Target test - Advanced

1. \& 2 .

2.

4. The inverse program for A is ' add 5 , then divide by 4 , then subtract 3 '.

The inverse program for B is 'subtract 1 , then divide by 2 , then subtract 5 , then multiply by 3^{\prime}.

Page 1 - Showing the pattern

$$
\begin{gathered}
5 \rightarrow 5 \times 3-2=13 \\
2 \rightarrow 2 \times 3-2=14 \\
4 \rightarrow 4 \times 3-2=10 \\
3 \rightarrow 3 \times 3-2=7 \\
3 \rightarrow 10 \times 3-2=28 \\
10 \rightarrow
\end{gathered}
$$

$$
\begin{array}{rlr}
4 & \rightarrow & 4 \times 5+3=23 \\
10 & \rightarrow & 10 \times 5+3=53 \\
3 & \rightarrow & 3 \times 5+3=18 \\
\mathbf{8} & \rightarrow & \mathbf{8 \times 5}+\mathbf{3}=\mathbf{4 3} \\
\mathbf{5} & \rightarrow & \mathbf{5} \times 5+\mathbf{3}=\mathbf{2 8}
\end{array}
$$

(IN)		$\times 10$	$+6$
1	\rightarrow	$10+6=16$	
2	\rightarrow	$20+6=26$	
3	\rightarrow	$30+6=36$	
4	\rightarrow	$40+6=46$	
5	\rightarrow	$50+6=56$	
	\rightarrow		$10+6$

Page 2 - Describing patterns

\square
\square

\square	\rightarrow	$\square \times 6+2$
4	\rightarrow	$4 \times 6+2=26$
3	\rightarrow	$3 \times 6+2=20$
5	\rightarrow	$5 \times 6+2=32$

\square	$\rightarrow \square \times 10-6$
7	$\rightarrow 7 \times 10-3=67$
2	$\rightarrow 2 \times 10-3=17$
9	$\rightarrow 9 \times 10-3=87$

Page 3 - Introducing x

Flag diagram	Pattern in algebra$x \rightarrow 3 x+2$	Pattern in algebra Flag diagram				
$(\pi)^{53)^{+2}}$		$x \rightarrow 7 x-$			-5	7)
$(\pi)^{54}$	$x \rightarrow 4 x-3$	$x \rightarrow 5 x-8$		-		(3v)

Page 4 - Danger - ambiguity!

continued/

Page 5 - Getting things straight

Pattern in algebra	Example	Program in words	
x	$\rightarrow 2(x+3)$	$7 \rightarrow 20$	Add 3, then double
x	$\rightarrow 2 x+3$	$7 \rightarrow 17$	Double, then add 3
x	$\rightarrow 7(x-1)$	$7 \rightarrow 42$	Subtract 1, then multiply by 7
x	$\rightarrow x+3 \times 2$	$7 \rightarrow 13$	Add 6 (the same as $x \rightarrow x+6)$
x	$\rightarrow 5 x-4$	$7 \rightarrow 31$	Multiply by 5, then subtract 4
x	$\rightarrow 6(x-2)$	$7 \rightarrow 30$	Subtract 2, then multiply by 6

Page 6 - Working with x

Page 7 - Division

continued/

1340 Pattern and Notation (cont)

Page 7 - Division (cont)

Page 8 - Working backwards

$x \quad \rightarrow \quad \frac{x-5}{3}$

1340 Pattern and Notation (cont)

Page 9 - The equation of a machine

$\begin{aligned} & y=\frac{x}{3} \\ & x=3 y \end{aligned}$		$y=2(x-1)$$x=\frac{y}{2}+1$		$\begin{aligned} & y=\frac{x}{2}+7 \\ & x=2(y-7) \end{aligned}$		$\begin{aligned} & y=4 x-5 \\ & x=\frac{y+5}{4} \end{aligned}$		$\begin{gathered} y=\frac{x+5}{2} \\ x=2 y-5 \end{gathered}$		$\begin{aligned} & y=3 x+2 \\ & x=\frac{y-2}{3} \end{aligned}$	
x	y										
9	3	3	4	4	9	2	3	7	6	1	5
30	10	7	12	10	12	7	23	3	4	6	20
24	8	10	18	6	10	4	11	11	8	10	32
21	7	5	8	2	8	5	15	1	3	2	8
6	2	2	2	8	11	3	7	9	7	5	17
27	9	11	20	14	14	10	35	5	5	3	11

Page 10 - Solving equation in x

$$
\frac{x+7}{6}=8
$$

Target Test - Standard

1.

2.

1340 Pattern and Notation (cont)

3.

Program	\pm+5	Equations
Add 5	(2) $2(x+5)$	$y=2(x+5)$
then double		$x=\frac{y}{2}-5$

Target Test - Advanced

1. $x \rightarrow 3(x+5)$
2.

a) $y=4(x+6)$
$x=\frac{y}{4}-6$
b) $y=\frac{x-3}{7}$

$$
x=7 y+3
$$

3.

1341 Number Machines

Page 1 - Number mappings

Add 7		
$\boldsymbol{a} \rightarrow$	$a+7$	
IN	OUT	
2	\rightarrow	9
10	\rightarrow	17
31	\rightarrow	38
5	\rightarrow	12
8	\rightarrow	15

Subtract 4		
$\boldsymbol{b} \rightarrow$		$\boldsymbol{b}-4$
IN	OUT	
7	\rightarrow	3
29	\rightarrow	25
85	\rightarrow	81
12	\rightarrow	8
23	\rightarrow	19

Multiply by 5		
$\boldsymbol{c} \rightarrow$	$5 c$	
IN	OUT	
8	\rightarrow	40
20	\rightarrow	100
3	\rightarrow	15
100	\rightarrow	500
12	\rightarrow	60

Divide by 2 $d \rightarrow \frac{d}{2}$ IN OUT 12 \rightarrow		
40	\rightarrow	20
8	\rightarrow	4
14	\rightarrow	7
32	\rightarrow	16

Page 2 - Spot the pattern
A Multiply by 4 B Subtract $7 \quad$ C \quad Divide by 3
Page 3 - Complicated programs

Multiply by 3 then subtract 2			Take away from 20			Add 7 thendivide by 2			Add 1, then double, then subtract 2$h \rightarrow 2(h+1)-2$		
	$3 e$		$f \rightarrow 20-f$			$g \rightarrow \frac{g+7}{2}$					
IN		OUT									
5	\rightarrow	13	5	\rightarrow	15	5	\rightarrow	6	5	\rightarrow	10
11	\rightarrow	31		\rightarrow			\rightarrow		11	\rightarrow	22
7	\rightarrow	19		\rightarrow			\rightarrow		7	\rightarrow	14
13	\rightarrow	37		\rightarrow		13	\rightarrow		13	\rightarrow	26
3	\rightarrow	7	3	\rightarrow	17	3	\rightarrow	5	3	\rightarrow	6

Page 4 - Finding programs

A Multiply by 3 and then subtract 4
B Add 5, and then multiply by 2
C Take away from 15
Page 5-5 $\rightarrow 15$
a) $10 \rightarrow 20$
b) $10 \rightarrow 30$
c) $10 \rightarrow \mathbf{1 0}$
d) $10 \rightarrow 25$
1.

Add 12	$4 \rightarrow 16$

2. Take away from 30 $4 \rightarrow 26$
3.

Double then add 3	$4 \rightarrow 11$

4. Multiply by 3 then subtract 6 $4 \rightarrow 6$

Add 12		
$i \rightarrow$	$i+12$	
IN		OUT
9	\rightarrow	21
4	\rightarrow	16
12	\rightarrow	24
7	\rightarrow	19
10	\rightarrow	22

| Take away
 from 30
 $\boldsymbol{j} \rightarrow$ $30-\boldsymbol{j}$
 IN OUT
 9 \rightarrow 21
 4 \rightarrow 26
 12 \rightarrow 18
 7 \rightarrow 23
 10 \rightarrow 20${ }^{2}+$ |
| :---: | :---: | :---: |

Multiply by 3 then subtract 6 $k \rightarrow$	$3 k-6$	
IN		OUT
9	\rightarrow	21
4	\rightarrow	6
12	\rightarrow	30
7	\rightarrow	15
10	\rightarrow	24

| Double, then
 add 3
 $l \rightarrow$ $2 l+3$
 IN OUT
 9 \rightarrow 21
 4 \rightarrow 11
 12 \rightarrow 27
 7 \rightarrow 17
 10 \rightarrow 23 |
| :---: | :---: | :---: |

Page 6-A new notation
Part 1

Part 2

Take away from 30	
\square	$\rightarrow 30-\square$
IN	OUT
7	\rightarrow
10	$\rightarrow 23$
3	\rightarrow
13	\rightarrow
6	\rightarrow
6	24

Multiply by 2 then add 3		
		$\rightarrow 2 \times$
\square	+3	
IN	OUT	
7	\rightarrow	17
10	\rightarrow	23
3	\rightarrow	9
13	\rightarrow	29
6	\rightarrow	15

Page 7 - Using letters

Add 5		
x	\rightarrow	$x+5$
4	\rightarrow	9
13	\rightarrow	18
2	\rightarrow	7
6	\rightarrow	11
9	\rightarrow	14

Take away from 17		
x	\rightarrow	$17-x$
4	\rightarrow	13
13	\rightarrow	4
2	\rightarrow	15
6	\rightarrow	11
	\rightarrow	8

Divide by 2 then add 1		
x	\rightarrow	$x \div$
4	\rightarrow	3
14	\rightarrow	8
2	\rightarrow	2
	\rightarrow	4
10	\rightarrow	6

Multiply by 3 then subtract 1		
x	\rightarrow	$3 \times x-1$
4	\rightarrow	11
13	\rightarrow	38
2	\rightarrow	5
6	\rightarrow	17
	\rightarrow	26

Page 8 - Introducing brackets

$6 \times(4+6)=60$	$2+3 \times 4+5=19$
$6 \times 4+6=30$	$(2+3) \times 4+5=25$
$9-4 \times 2=1$	$2+3 \times(4+5)=29$
$(9-4) \times 2=10$	$(2+3) \times(4+5)=45$

$5+4 \times 3=17$	$1+3 \times(4-2)=17$
$(5+4) \times 3=27$	$(1+3) \times 4-2=14$
$(7-3) \times 2=8$	$(1+3) \times(4-2)=8$
$7-3 \times 2=1$	$1+3 \times 4-2=11$

Page 9-An algebraic convention

Words	Boxes	Algebra
Add 3, then divide by 2	$\square \rightarrow(\square+3) \div 2$	$x \rightarrow(x+3) \div 2$
Take away from 20	$\square \rightarrow 20-\square$	$y \rightarrow 20-y$
Subtract 7, then multiply by 5	$\square \rightarrow(\square-7) \times 5$	$z \rightarrow 5(z-7)$
Divide by 2, then add 1	$\square \rightarrow \square \div 2+1$	$t \rightarrow t \div 2+1$
Take away from 15, then multiply by 2	$\square \rightarrow(15-\square) \times 2$	$g \rightarrow 2(15-g)$
Double, then add 3, then double	$\square \rightarrow(2 \times \square+3) \times 2$	$w \rightarrow 2(2 w+3)$
Double, then take away from 30	$\square \rightarrow 30-2 \times \square$	$s \rightarrow 30-2 s$

Target test-Standard

1.

Multiply by 3		
x	\rightarrow	$3 x$
7	\rightarrow	21
2	\rightarrow	6
5	\rightarrow	15
10	\rightarrow	30
8	\rightarrow	24
15	\rightarrow	45

2.

Subtract 2		
x	\rightarrow	$x-2$
4	\rightarrow	2
10	\rightarrow	8
7	\rightarrow	5
12	\rightarrow	10
5	\rightarrow	3
16	\rightarrow	14

4.

Subtract from 23		
x	\rightarrow	$23-x$
12	\rightarrow	11
9	\rightarrow	14
14	\rightarrow	9
3	\rightarrow	20
20	\rightarrow	3
7	\rightarrow	16

Target test - Advanced

1

Double then take away from 37		
$x \rightarrow 37-2 x$		
IN		OUT
9	\rightarrow	19
6	\rightarrow	25
14	\rightarrow	9
5	\rightarrow	27
	\rightarrow	33
16	\rightarrow	5

3

Subtract from 18		
$\boldsymbol{x} \rightarrow \mathbf{1 8 - x}$		
IN		OUT
9	\rightarrow	9
6	\rightarrow	12
14	\rightarrow	4
5	\rightarrow	13
2	\rightarrow	16
16	\rightarrow	2

2.

Double then add 6, then halve		
$x \rightarrow 2 \underline{2 x+6}$		
2		
IN		OUT
9	\rightarrow	12
6	\rightarrow	9
14	\rightarrow	17
5	\rightarrow	8
2	\rightarrow	5
16	\rightarrow	19

4. You should have four of these.

$$
\begin{array}{lll}
x & \rightarrow & x+10 \\
x & \rightarrow & 24-x \\
x & \rightarrow & 2 x+3 \\
x & \rightarrow & 3 x-4 \\
x & \rightarrow & 2(x+1)+1 \\
x & \rightarrow & (5 x-1) \div 2
\end{array}
$$

If you have a different program from these, check it with your teacher.

1342 Mappings and Graphs

Page 1 - From mapping to graph

Page 2 - From graph to mapping

	IN		OUT
	7	\rightarrow	6
B	3	\rightarrow	4
C	9	\rightarrow	7
D	1	\rightarrow	3
E	5	\rightarrow	5

Page 3 - From program to graph

Page 4 - Linear mappings

Add 5	
$x \rightarrow x+5$	
IN	OUT
1	$\rightarrow 6$
2	$\rightarrow 7$
3	$\rightarrow 8$
	$\rightarrow 9$
5	$\rightarrow 10$

Double, then subtract 1

Page 5 - Finding mistakes

The mistake is $5 \rightarrow 2$
$5 \rightarrow 4 \quad x \rightarrow 9-x$

The mistake is $3 \rightarrow 7$
$3 \rightarrow 6 \quad x \rightarrow x+3$

The mistake is $3 \rightarrow 2$
$3 \rightarrow 1 \quad x \rightarrow 2 x-5$

Page 6 - Co-ordinates

a)
$A(2,3) \quad P(7,3)$
$B(7,8) \quad Q(5,4)$
$C(4,5) \quad R(1,6)$
S (9, 2)
b)

Page 7 - The equation of a line

$y=x+2$	
x	y
1	3
2	4
3	5
4	6

$y=2 x-3$	
x	y
2	1
3	3
4	5
5	7

Page 8 - Finding an equation

AC				
$y=x+1$				
x	y			
1	2			
4	5			
7	8			
9	10	\quad	$y=15-x$	
:---:	:---:			
x	y			
4	11			
5	10			
7	8			
10	5	\quad	$y=3 x-1$	
:---:	:---:			
x	y			
1	2			
2	5			
3	8			
4	11			

EF's equation is $y=8$ because the y co-ordinate each time equals 8 .
Page 10 - Intersecting lines

Number Machine	both give	Number Machine	both give		
(1) and (2)	$9 \rightarrow 6$	(3) and (4)	$1 \rightarrow 10$		
(1) and (3)	$7 \rightarrow 4$	(1) and (5)	$10 \rightarrow 7$		
(2) and (3)	$5 \rightarrow 6$	(2) and (5)	$8 \rightarrow 6$		
(1) and (4)	$5 \rightarrow 2$	(3) and (5)	$6 \rightarrow 5$		
(2) and (4)	$3 \rightarrow 6$	(4) and (5)	$4 \rightarrow 4$		
continued/					

1342 Mappings and Graphs (cont)

Target test - Standard

1. a)

b) The mistake is $3 \rightarrow 7$; it should be $3 \rightarrow 6$.
c) add 3
d) $x \rightarrow x+3$
e) $y=x+3$
2. a) $x \rightarrow y$
$1 \rightarrow 2$
$2 \rightarrow 2^{\frac{1}{2}}$
$3 \rightarrow 3$
$5 \rightarrow 4$
$7 \rightarrow 5$
$9 \rightarrow 6$
$11 \rightarrow 7$
b) $y=2 x$
c) double or multiply by 2
d) $x \rightarrow 9-x$
e) $\mathrm{A}(1,2) \quad \mathrm{B}(3,6) \quad \mathrm{C}(5,4)$

Target test - Advanced

1.

a) $(10,9)$
b) $(2,5)$
c) $(6,1)$

1342 Mappings and Graphs (cont)

2.

(1) $x \rightarrow 2 x$
(2) $x \rightarrow 2$
(3) $x \rightarrow x+1$
(4) $x \rightarrow 15-x$

1343 Simple Mappings

Page 1 - Row of bricks

Page 2 - Equilateral triangles

Page 3 - Building a fence

Page 4 - Row of squares

1. Squares Matches
$1 \rightarrow 4$
$2 \rightarrow 7$
$3 \rightarrow 10$
$4 \rightarrow 13$
$5 \rightarrow 16$
$11 \rightarrow 34$
$60 \rightarrow 181$
2. In words
multiply by 3 then add 1
3. In algebra

$$
m \rightarrow 3 m+1
$$

Page 5 - Rectangles

Page 6 - Diamond dots

Page 7 - Intersecting circles

Page 8 - Dot pattern

1343 Simple Mappings (cont)

Page 9 - Row of hexagons

1. Hexagon	Matches	2. In words	
1	\rightarrow	6	
2	\rightarrow	11	
3	\rightarrow	16	multiply by 5 then add 1
	$\rightarrow 21$	3. \quad In algebra	
5	$\rightarrow 26$		
12	$\rightarrow 61$		
100	$\rightarrow 501$		

Page 10 - Overlapping triangles

Target test - Standard

Number of triangles	Number of dots	Number of matches
$1 \rightarrow$	3	3
$2 \rightarrow$	4	5
$3 \rightarrow$	5	7
$4 \rightarrow$	6	9
$5 \rightarrow$	7	11
$10 \rightarrow$	12	21
$100 \rightarrow$	102	201

a) add 2
b) multiply by 2 then add 1
a) $x \rightarrow x+2$
b) $x \rightarrow 2 x+1$

Target test - Advanced

Number of squares long	Number of dots	Perimeter	Number of matches
$1 \rightarrow$	6	6	7
$2 \rightarrow$	9	8	12
$3 \rightarrow$	12	10	17
$4 \rightarrow$	15	12	22
$5 \rightarrow$	18	24	27
$10 \rightarrow$	33	204	52
$100 \rightarrow$	303		502

1343 Simple Mappings

a) add 1 then multiply by 3 or multiply by 3 then add 3
b) double then add 4 or add 2 and then double
c) multiply by 5 then add 2
a) $y \rightarrow 3(y+1)$ or $y \rightarrow 3 y+3$
b) $y \rightarrow 2 y+4$ or $y \rightarrow 2(y+2)$
c) $y \rightarrow 5 y+2$

1344 Further Mappings

Page 1 - Pattern with squares

1. Squares	Dots	Matches	2.	Dots:	multiply by 3 then add 1
1	\rightarrow	4	4		
2	\rightarrow	7	8		Matches: multiply by 4
3	$\rightarrow 10$	12			
	\rightarrow	13	16	3.	Dots: $x \rightarrow 3 x+1$
5	\rightarrow	16	20		
10	$\rightarrow 31$	40		Matches: $x \rightarrow 4 x$	
100	$\rightarrow 301$	400			

Page 2 - Pattern with triangles

Page 3 - Another triangle pattern

1. Triangles	Dots	Matches	2.	Dots:	multiply by 3
1	\rightarrow	3	3		
2	\rightarrow	6	7		Matches:
3	multiply by 4 then subtract 1				
4	9	11			
	\rightarrow	12	15	3.	Dots:
$5 \rightarrow 3 n$					
11	\rightarrow	15	19	43	
	Matches: $n \rightarrow 4 n-1$				
80	$\rightarrow 240$	319			

1344 Further Mappings (cont)

Page 4 - Hydrocarbons

Page 5 - Row of houses

1.	$\begin{array}{cc} \hline \text { 'Houses' } & \text { Dots } \\ 1 \rightarrow & 5 \\ 2 \rightarrow & 8 \end{array}$	Matches 6 11	2.	Dots: Matches:	multiply by 3 then add 2 multiply by 5 then add 1
	$3 \rightarrow 11$	16			
	$\begin{array}{ll} 4 \rightarrow & 14 \\ 5 \rightarrow & 17 \end{array}$	21			
	$10 \rightarrow 38$	61		Matches:	$h \rightarrow 5 h+1$
	$100 \rightarrow 302$	501			

Page 6 - Double row of squares

Page 7 - Joined hexagons

1. Hexagons	Dots	Matches	2.	Dots:	multiply by 5 then add 1	
1	\rightarrow	6	6			
2	\rightarrow	11	14		Matches:	multiply by 8 then subtract 2
3	\rightarrow	16	22			
4	\rightarrow	21	30	3.	Dots:	$x \rightarrow 5 x+1$
5	\rightarrow	26	38			
10	$\rightarrow 51$	78		Matches: $x \rightarrow 8 x-2$		
50	\rightarrow	251	398			

Page 8 - Wall with spikes

1.	Spikes $1 \rightarrow$ $2 \rightarrow$	$\begin{gathered} \text { Leng } \\ 1 \\ 3 \\ 5 \end{gathered}$	Matches 5 12 19		Length: Matches:	multiply by multiply b
	$4 \rightarrow$	7	26	3.	Length:	$s \rightarrow 2 s-1$
	$5 \rightarrow$	9	33			
	$12 \rightarrow$	23	82		Matches:	$s \rightarrow 7 s-2$
	$100 \rightarrow$	199	698			

Page 9-Square of squares

Page 10 - Row of cubes

1	$\begin{array}{cc} \hline \text { Cubes } & \text { Dots } \\ 1 \rightarrow & 7 \\ 2 \rightarrow & 10 \end{array}$	Matches 9 14		Dots: Matches:	multiply by multiply by
	$4 \rightarrow 16$	24	3.	Dots:	$n \rightarrow 3 n+4$
	$5 \rightarrow 19$	29			
	$20 \rightarrow 64$	104		Matches:	$n \rightarrow 5 n+4$
	$1000 \rightarrow 3004$	5004			

Target test - Standard

Side of large square	Number of small squares	Perimeter of L-shape	Number of matches
$2 \rightarrow$	3	8	10
$3 \rightarrow$	5	12	16
$4 \rightarrow$	7	16	22
$5 \rightarrow$	9	20	28
$6 \rightarrow$	11	40	34
$10 \rightarrow$	19	400	58
$100 \rightarrow$	199	$4 x$	$6 x-2$
$x \rightarrow$	$2 x-1$		

1344 Further Mappings (cont)

Target test - Advanced

Number of dots	Perimeter	Number of small triangles	Number of matches
$1 \rightarrow$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{1 2}$
$2 \rightarrow$	8	$\mathbf{1 0}$	19
$3 \rightarrow$	10	14	26
$4 \rightarrow$	12	18	33
$5 \rightarrow$	14	22	40
$10 \rightarrow$	24	42	75
$100 \rightarrow$	204	402	705
$x \rightarrow$	$2 x+4$	$\mathbf{4 x + 2}$	$7 x+5$

1345 Mastermind

The second digit is either 8 or 6 . Can you see why?

1347 Tromino

1. b)

2. a) $27 \mathrm{~cm}^{2}$
b) $3 \mathrm{~cm}^{2}$
c) 9

3. Many possible answers. In every case the lengths must all be in the ratio shown.

4. Many possible answers. In every case the rectangle must be three times as long as it is wide. e.g.

6

1. D
2. B
3.

D, J,
H, A, E,
C, G, F,
B
4. F
5. E
6. F, C, H, A, G, B, D, E
7. J
8. E
9. J, C, G, D, A and B, F and H, E
10. a) Buckingham Palace
11. b) Houses of Parliament
12. b) Oxford Circus
13. b) Oxford Circus
14. a) via Oxford Circus
15. Either

Bow Street \rightarrow Piccadilly Circus \rightarrow Trafalgar Square \rightarrow Houses of Parliament or
Houses of Parliament \rightarrow Trafalgar Square \rightarrow Piccadilly Circus \rightarrow Bow Street.
16. Victoria Station

1349 Time Line
1.-5. Get someone else to check your answers
6.-8. Show your answers to your teacher.

1350 Bases

1. a) 13 (base five)
b) 23 (base five)
c) 40 (base five)
d) 103 (base five)
2. a) 32 (base four)
b) 3 (base four)
c) 113 (base four)
d) 302 (base four)
e) 1012 (base four)
3. 33 (base seven)
4. 111 (base eight)
5. 45 (base ten)
6. 1013 (base five)

1351 Base Three

2.

		threes	ones
5	=	1	2
4	=	1	1
8	=	2	2
3	=	1	0
2	=		2

4.

nines threes ones
$11=102$
$19=201$
$15=120$
$18=200$
$26=222$
5. twenty-sevens nines threes ones
$30=1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$
$42=\begin{array}{lllll}1 & 1 & 2 & 0\end{array}$
$51=1 \begin{array}{llll}1 & 2 & 2 & 0\end{array}$
$54=0 \quad 0 \quad 0 \quad 0$
$\begin{array}{ccccc}\text { eighty-ones } & \text { twenty-sevens } & \text { nines } & \text { threes } & \text { ones } \\ = & 1 & 0 & 2 & 0\end{array}$
6. Three twenty-sevens make eighty-one, a new column.
7. Eighty.

1352 Wheels

- In the first arrangement if wheel A turns clockwise, B turns anticlockwise, C turns clockwise and D turns clockwise.
- In the second arrangement A and C turn the same way and B and D turn the other way.
- Here is an arrangement so that wheel A turns clockwise and wheels B, C and D all turn anticlockwise.

- What other arrangements of belts did you find?

1353 A Number of Things

1. 24 portions of cheese. (6×4)
2. $\quad 32$ legs. (4×8)
3. 22 legs. (11×2)
4. 5 felt tips in each pack. $(15 \div 3)$
5. 48 cans of coke. (12×4)
6. 3 apples each. $(9 \div 3)$
7. 21 darts. (7×3)
8. 50 squares of chocolate. (5×10)
9. 30 toes. $(3 \times 10$ or $6 \times 5)$
10. 54 eggs. (9×6)
11. 5 players. $(10 \div 2)$
12. 21 buttons. (3×7)
13. 32 wheels. (4×8) or 40 wheels (5×8) if you include the spare tyre.
14. 5 boxes of pencils. $(50 \div 10)$
15. 64 sausages. (8×8)

1354 Euler Solids

- Were you able to make all of the five Platonic Solids?

Did you check to see that Euler's Rule worked for these five solids?

- The small stellated dodecahedron, the great dodecahedron, the great icosahedron and the great stellated dodecahedron are now defined as regular because each side is equal.
- Were you able to make the great dodecahedron?

1355 Halves and Quarters

1. 4
2. 3
3. $5 p$
4. Many possible answers.
5. 30
6. $2 p$
7. 2
8. $3 p$
9. 15
10. 4

1356 How Much?

1. $21 p$
2. 40 p
3. $21 p$
4. Yes, because $30 p+30 p+30 p=90 p$
5. 54 p
6. 39 p

1356 How Much? (cont)

7. 4 p because the apples cost 36 p altogether.
8. No because $7 p+7 p+7 p=21 p$
9. 42 p
10. 63 p
11. None. 2 pints $=80 \mathrm{p}$
${ }^{\frac{1}{2}}$ pints $=20 \mathrm{p}$
$80 \mathrm{p}+20 \mathrm{p}=100 \mathrm{p}=£ 1.00$
12. No. $57 \mathrm{p}+57 \mathrm{p}=114 \mathrm{p}=£ 1.14$

1357 Missing Signs

1. $60 \square 15=4$
2. $12 \quad \mathbf{x} 13=156$
3. $60 \quad+15=75$
4. $455 \boxed{x} 5=2275$
5. $60 \quad \mathbf{x} 15=900$
6. $1246+\square=1285$
7. $60 \quad-15=45$
8. $1246 \square 39=1207$
9. $456 \square 3=459$
10. $12 \quad+13=25$
11. $456 x=1368$
12. $455 \square 5=91$
13. $456 \boxed{-} 3=453$
14. $313-156=157$
15. $456 \square 3=152$
16. $333 \times \mathbf{x} 399$
17. $35 \times \mathbf{x} 5=175$
18. $924 \square 154=6$
19. 260
$\mathrm{x} 10=2600$
20. $924 \div \div=154$
or
$924 \boxed{-} 770=154$

1358 Joining Multiples

- When you join up the multiples of 2 in order, you should draw the number 2 .
- When you join up the multiples of 3 in order, you should draw the number 3 .
- When you join up the multiples of 7 in order you should draw the number 7 .

1359 Joining Odds and Evens

- When you join up all the odd numbers in order you should draw a flamingo.
- When you join up all the even numbers you should draw an eagle.

1360 Pictures from Multiples

- When you join up the multiples of 3 in order you should draw a hurdler.
- When you join up the multiples of 4 in order you should draw a footballer.
- When you join up the multiples of 5 in order you should draw a fencer.

1361 Three in Line

| 3 in line | | back to front | Result |
| :---: | :---: | :---: | :---: | :---: |
| 159 | + | 951 | 1110 |
| 789 | + | 987 | 1776 |
| 456 | + | 654 | 1110 |
| 123 | + | 321 | 444 |
| 753 | + | 357 | 1110 |
| 741 | + | 147 | 888 |
| 852 | + | 258 | 1110 |
| 963 | + | 369 | 1332 |

You may have seen these patterns.

- 1110 turns up four times. It comes from the lines with the 5 in the middle.
- 444 which is 444×1

888 which is 444×2
1332 which is 444×3
1766 which is 444×4

1362 Visiting British Gas

1. The local gas showrooms have now changed their names to Energy Centres. Your answers will vary from place to place.
2. Did you plan your route from school or from your home?
$3 \& 4$ Make a display of the group's work.

You should find that you never need more than 4 colours, and usually less.

1365 Number Snap

Copy the pairs you won in your book and show them to your teacher.

1366 Pairs

Copy the pairs you won in your book and show them to your teacher.

1367 Lines

Write down the numbers you were able to cover.
Which numbers were they multiples of?

1368 The Mobius Band

In this investigation you can vary:

- the number of cuts
- the placing of the cut and
- the number of twists.

With a systematic approach it should be possible to find patterns.

1369 Infinity

- Between Fractions

1.-3. There are many different answers for questions 1,2 and 3.

Make sure you checked your answers with a calculator.
4. There is always a fraction between two other fractions. However close the two fractions are, you can always squeeze another one between them. This means the number of numbers between 0 and 1 is infinite.

There is a simple way to demonstrate this:
Consider $\frac{a}{b}$ and $\frac{c}{d}$
Mean average $=\frac{1}{2}\left(\frac{a}{b}+\frac{c}{d}\right)$
$=\frac{a d+b c}{2 b d}$
The mean average is a fraction which must be half way between the other two fractions.

- A Frog in a Pond

1. After 1 jump the frog is 10 metres from the edge.

After 2 jumps the frog is 5 metres from the edge.
After 3 jumps the frog is 2.5 metres from the edge.
After 6 jumps the frog is 0.3125 metres from the edge.
2. It takes 5 jumps to be within 1 metre of the edge.

It takes 8 jumps to be within 10 cm of the edge.
3. In theory, the frog never reaches the edge of the pond. It is always jumping half way and so there will always be some distance left to jump. This distance gets smaller and smaller. A spreadsheet can be used to show this.

	\mathbf{A}	\mathbf{B}
$\mathbf{1}$	Jumps	Distance to edge
2	0	20.0000000000
$\mathbf{3}$	1	10.0000000000
4	2	5.0000000000
5	3	2.5000000000
6	4	1.2500000000
7	5	0.6250000000
8	6	0.3125000000
9	7	0.1562500000
10	8	0.0781250000
11	9	0.0390625000
12	10	0.0195312500

In practice, of course, the distance remaining gets so very small that the frog would be at the edge.

- Radioactivity

1.\&2. A spreadsheet can be used to generate the information very quickly and can also create a graph to show the information.

Time in years	Proportion of atoms remaining
1	0.9
2	0.81
3	0.729
4	0.6561
5	0.59049
6	0.531441
7	0.4782969
8	0.43046721
9	0.38742049
10	0.34867844
11	0.3138106
12	0.28242954
13	0.25418658
14	0.22876792
15	0.20589113
16	0.18530202
17	0.16677182
18	0.15009464
19	0.13508517
20	0.12157665

continued/

1369 Infinity (cont)

3. The half-life of smilephorus is approximately 6.7 years.
4. It will take approximately 13 years for $3 / 4$ of the atoms to disintegrate.
5. By extending the spreadsheet you can quickly see:
a) After 25 years approximately 0.07 of the atoms will remain.
b) After 30 years approximatley 0.04 of the atoms will remain.
c) After 40 years approximatley 0.01 of the atoms will remain.
6. The smilephorus will never all disintegrate (or at least not until there is only one atom left). If a certain proportion disintegrates each year, there must always be something remaining. (But the amount remaining after 40 years is very, very small).

Half-life is an exact measure which physicists use. There must be a definite time when exactly half of the atoms have disintegrated and half still remain.
If the half-life of smilephorus is 6.7 years, whereas the half-life of frownphorus is only 2 years then frownphorus must be much more radio-active than smilephorus. It disintegrates more quickly.

- Infinite Series

1. a) $1+1 / 4+1 / 16+1 / 64+1 / 256+1 / 1024+\ldots$
b) The series is infinite. It continues for ever.
c) $1+1 / 4=1.25$
$1+1 / 4+1 / 16 \quad=1.3125$
$1+1 / 4+1 / 16+1 / 64=1.3281$
$1+1 / 4+1 / 16+1 / 64+1 / 256=1.3320$
$1+1 / 4+1 / 16+1 / 64+1 / 256+1 / 1024=1.3330$
(These answers are correct to 4 decimal places)
d) $4 / 3=1 . \dot{3}(=1.3333 \ldots)$
e) The answers in c) get closer and closer to the answer in d).
2. a) $1+1 / 5+1 / 25+1 / 125+1 / 625+\ldots$
b) The series is infinite.
c) If you sum the first 2 terms, then the first 3 terms, then first 4 terms and so on, the answers get closer and closer to 1.25.
d) The sum of the series is equal to $5 / 4$.
3. $8 / 7=1+1 / 8+1 / 64+1 / 512+\ldots$

Try to explain why the denominators are powers of 8 this time.
a) $\begin{array}{ll}1+1 / 8 & =1.125 \\ 1+1 / 8+1 / 64 & =1.1406 \\ 1+1 / 8+1 / 64+1 / 512 & =1.1426\end{array}$
b) $8 / 7=1.1429$
(These answers are correct to 4 decimal places)

1369 Infinity (cont)

- To Think About

A circle has an infinite number of lines of symmetry: however many you think there might be it is always possible to imagine some more even if it is not always possible to draw any more.

The number of integers (whole numbers) is infinite: you can always make a larger integer by adding one, so there cannot be a largest one.

Similarly, the number of even numbers is infinite and so is the number of multiples of 5 . It is interesting to see that there are as many even numbers as there are integers:

$3 \longleftrightarrow 6$
$4 \longleftrightarrow 8$
$5 \longleftrightarrow 10$
$6 \longleftrightarrow 12$
.
Can you see why this is surprising?
The same is true for multiples of five.
There is no biggest number which is smaller than 2 . Whichever number you try, you can always find a bigger one:
e.g. if you thought 1.999999 was the largest you would be wrong because 1.9999991 is larger.

- Achilles and The Tortoise

1. $\underline{1000+x}=\underline{x} \quad$ Multiply both sides of the equation by 50.
$1000+x=\frac{50 x}{10}$
$1000+x=5 x \quad$ Subtract x from both sides.
$1000=4 x \quad$ Divide both sides by 4.
$250=x$
2. $200=200$

$$
200+40 \quad=240
$$

$$
200+40+8 \quad=248
$$

$$
200+40+8+1.6 \quad=249.6
$$

$$
200+40+8+1.6+0.32 \quad=249.92
$$

$$
200+40+8+1.6+.0 .32+0.064=249.984
$$

1369 Infinity (cont)

3.

Achilles starts here	tortoise starts here	Achilles catches tortoise here	

Achilles travels $2000+x$ metres. Achilles' speed is $4.04 \mathrm{~m} / \mathrm{sec}$
So Achilles' journey time is $2000+x$ secs.
4.04

The tortoise travels x metres. The speed of the tortoise is $0.04 \mathrm{~m} / \mathrm{sec}$.
So the tortoise's journey time is \qquad
0.04

When Achilles catches the tortoise, the journey times are equal.
So $\underline{2000+x}=\underline{x} \quad$ Multiply both sides by 100. $4.04 \quad 0.04$
$\frac{2000+x}{404}=\frac{x}{4} \quad$ Multiply both sides by 404.
$2000+x=101 x \quad$ Subtract x from both sides.
$2000=100 x \quad$ Divide both sides by 100.
$20=x$
So Achilles runs 2020 metres and catches the tortoise after it has run 20 metres.
4. This spreadsheet allows each calculation to be shown to 17 decimal places.

	\mathbf{A}
1	2000.00000000000000000
2	19.80198019801980000
3	0.19605920988138400
4	0.00194118029585529
5	0.00001921960688966
6	0.00000019029313752
7	0.00000000188409047
8	0.00000000001865436
9	0.00000000000018470
10	0.00000000000000183
11	0.00000000000000002
12	0.00000000000000000

a) $19.80198+0.19606+0.00194+0.000019+0.00000019+0.0000000019$
b) 19.80198
19.99804
19.99998
19.99999
19.99999
19.99999
5. The answers to the partial sums in 4 get closer and closer to the answer in 3.

1370 Stepping Stones

1. 16
2. 28
3. 16
4. 27
5. 14
6. 48

1374 Nine Links

1. a) $\begin{array}{rrrrr}31 & 81 & 63 & 72 & 54 \\ \frac{-13}{18} & \frac{-18}{63} & \frac{-36}{27} & \frac{-27}{45} & \frac{-45}{9}\end{array}$

$$
\text { The chain is } 31 \rightarrow 18 \rightarrow 63 \rightarrow 27 \rightarrow 45 \rightarrow 9
$$

b) $67 \rightarrow 9$
c) $25 \rightarrow 27 \rightarrow 45 \rightarrow 9$
d) $39 \rightarrow 54 \rightarrow 9$
2. Except for the starting number, each number in the chain is a multiple of 9 .
3. $63 \rightarrow 27 \rightarrow 45 \rightarrow 9$
$52 \rightarrow 27 \rightarrow 45 \rightarrow 9$
$85 \rightarrow 27 \rightarrow 45 \rightarrow 9$
$47 \rightarrow 27 \rightarrow 45 \rightarrow 9$

4. Here are some examples

5. Digit difference

Example
23
24
25

Chain
$\rightarrow 9$
$\rightarrow 18 \rightarrow 63 \rightarrow 27 \rightarrow 45 \rightarrow 9$
$\rightarrow 27 \rightarrow 45 \rightarrow 9$

To explain why they work, start by thinking of a number like 34 with digit difference of 1 .

- By changing 3 into 4 , you add 10 .
- By changing 4 into 3 , you subtract $1 \ldots$

1376 Jobs in Order

Each person has their own way of doing these jobs. Here is one set of sensible answers.

1377 Dice

1.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\bullet \\
\bullet
\end{array}+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=7\right.} \\
& {\left[\begin{array}{ll}
\bullet & \bullet \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right]=7}
\end{aligned}
$$

3. Show the net of your dice, with the dots marked on it, to your teacher.
4. Check that the dots always add up to 7 .

1378 Mappings

1.

Cars		Tyres
4	\rightarrow	20
5	\rightarrow	$\mathbf{2 5}$
12	\rightarrow	60
100	\rightarrow	500
n	\rightarrow	5 n

2. | Insects | | Legs |
| ---: | :--- | ---: |
| 4 | \rightarrow | $\mathbf{2 4}$ |
| 5 | \rightarrow | 30 |
| 12 | \rightarrow | $\mathbf{7 2}$ |
| 100 | \rightarrow | $\mathbf{6 0 0}$ |
| n | \rightarrow | $\mathbf{6 n}$ |
3. Triangles Matches
4.

Posts		Rail
4	\rightarrow	9
5	\rightarrow	$\mathbf{1 2}$
12	\rightarrow	33
100	\rightarrow	297
n	\rightarrow	$3(\mathrm{n}-1)$ or $3 \mathrm{n}-\mathbf{3}$

5. $50 \rightarrow 200$
6. $50 \rightarrow 201$
7. $50 \rightarrow 25$
$\mathrm{n} \rightarrow \mathbf{4 n}$
$\mathrm{n} \quad \rightarrow \quad 4 \mathrm{n}+1$
$\mathrm{n} \rightarrow \frac{1}{2} \mathrm{n}$
8. (a), (b) and (d).
9. There are many possible answers. Some possible answers are:
$\mathrm{n} \rightarrow 3 \mathrm{n}$
$\mathrm{n} \rightarrow \mathrm{n}+8$
$n \rightarrow n^{2}-4$
$n \rightarrow 4(n-1)$

Check your answers with your teacher if they are different.

1379 Fishing

2. $(0,0) \rightarrow(0,6) \rightarrow(3,6) \rightarrow(3,12) \rightarrow(7,12) \quad \rightarrow$
$(7,10) \rightarrow(11,10) \rightarrow(11,12) \rightarrow(15,12) \rightarrow(15,4) \quad \rightarrow$
$(11,4) \rightarrow(11,6) \rightarrow(7,6) \rightarrow(7,2) \rightarrow(10,2) \rightarrow$
$(10,0) \rightarrow(15,0)$
3. $4 \times 9 p=36 p$
4. $21 p \div 3=7 \mathrm{p}$
5. $50 p-28 p=22 p$
6. $5 \times 7 p=35 p$
7. $26 p \div 2=13 p$
8. a) $4 \times 13 \mathrm{p}=52 \mathrm{p}$
b) $£ 1.00-52 \mathrm{p}=48 \mathrm{p}$
9. $52 p-33 p=19 p$
10. $7 p+19 p+13 p=39 p$
11. $73 p-57 p=16 p$
12. $6 \times 17 \mathrm{p}=102 \mathrm{p}=£ 1.02$

Four times 9 p is 36 p .
21 p divided among 3 people, is 7 p each.
22 p more is needed.
Five times $7 p$ is 35 p.
$26 p$ divided among 2 people, is 13 p each.
4 bars at 13 p cost 52 p.
48p change.
The can costs 19p more than the bottle.
39p altogether.
16p more.
Six bags at 17 p each cost $£ 1.02$, so $£ 1$ is not enough.

1382 Paper Folding

1382A What shape do you get?

- You may have found lots of possibilities with two folds and one or two cuts including
... hexagons

\ldots. and octagons
... and even pentagons.

- All the shapes, except the parallelogram can be made by folding and cutting. Some of the shapes can be made in several ways. Here are some suggestions, all with one cut.

2nd fold: 90°

2nd fold: between 90° and 45°

Rhombus

continued/

You will need two cuts to make a rectangle:

1382B One Fold

Cutting a triangle from one fold gives a variety of shapes with one line of symmetry.

You may also be able to make the isosceles triangle into an equilateral triangle by adjusting the angle of the cut:

1382 Paper Folding (cont)

1382C Right-angle fold

One cut across 2 folds gives 4 equal sides, so you will be able to make a rhombus.

You will need to make the corners of the rhombus 90° for it to be a square.

1382D Two Folds

Most of the possibilities with one cut across two folds are described in the answers to 1382A.

1382E Straight Cut

One cut across 3 folds most often gives an octagon.
Can you see why?
There are two different cuts which give a square.
Did you find them both?
It is between these two cuts that you will get a convex hexagon.

1382F Three Folds

One cut across 3 folds most often gives an octagon. Even if the 3 folds do not all meet at one point your cut will still give an octagon. Can you see why?

What variations did you find by making your cut at right angles to one of the folds?

1383 Good Guesswork

1. Jim estimates that the table is about half his height. Half of 172 cm is between 80 cm and 90 cm .
2. Jim estimates that the bar is about double his height.
$2 \times 172 \mathrm{~cm}$ is about 350 cm .
3. 5 spans would measure about 1 metre because $5 \times 20 \mathrm{~cm}=100 \mathrm{~cm}$.
$2^{\frac{1}{2}}$ spans would measure about 50 cm because it is half of 5 spans.
4. a) Your answer will depend upon the size of your door, but the average height of a door is 2 m .
b) Your answer will depend upon the size of your room, but the average height of a room is 2.5 m .
c) Your answer will depend upon the width of your filing cabinet, but the average width of a filing cabinet is about 50 cm .
5. a) The tablecloth comes up to Jim's shoulders. A good estimate would be 150 cm by 150 cm or $1^{\frac{1}{2} \mathrm{~m}}$ by $1^{\frac{1}{2} \mathrm{~m}}$. Jim's table is $1 \mathrm{~m} \times^{\frac{1}{2} \mathrm{~m}}$ (see question 3). So the tablecloth is much too big.
b) $4^{\frac{1}{2}}$ spans would be about 90 cm because $4 \times 20 \mathrm{~cm}=80 \mathrm{~cm}$ and $\frac{1}{2} \times 20 \mathrm{~cm}=10 \mathrm{~cm}$ The picture is too big for the alcove.
6. If you are unsure about your answers, get someone else to check them.
7. Approximate measurements are:

Length of a Mini Car
Perimeter of the card
Size of a LP cover
Height of 12 storey building
Height of double decker bus

3 metres
80 cm folded (102 cm opened out)
120 cm
40 metres
4 metres

1384 Diagonals

1.

a)

c)

d)

2.

3. Five

4. Nine diagonals altogether.

1385 Times Square

- Which scores came up most often?
- Could you always use the scores?
- Were any squares impossible to cover?

1387 3-D Noughts and Crosses

- Did you develop a strategy? Is it best to go first?

1388 Double Up

1. $4 \mathrm{~cm}^{2} \rightarrow$ Double the sides $\rightarrow 16 \mathrm{~cm}^{2}$
2. $8 \mathrm{~cm}^{2} \rightarrow$ Double the sides $\rightarrow 32 \mathrm{~cm}^{2}$
3. $4 \mathrm{~cm}^{2} \rightarrow$ Double the sides $\rightarrow 16 \mathrm{~cm}^{2}$
4. $8 \mathrm{~cm}^{2} \rightarrow$ Double the sides $\rightarrow 32 \mathrm{~cm}^{2}$
5. $10 \mathrm{~cm}^{2} \rightarrow$ Double the sides $\rightarrow 40 \mathrm{~cm}^{2}$
6. No. Doubling the length of the sides does not double the area.
7. Four.
8. Four.
9. Show your shapes to your teacher.
10. When I double the sides of a shape, the area becames 4 times as big.

- If you continue the investigation to trebling the sides of shapes you will find the results even more surprising!
If you make the sides three times as long, the area becomes 9 times as big.
- What do you think would happen if you made the sides four times as long?

1389

Converging Sequences

1. Each sequence in A, B and C is obtained from the first two numbers. For an explanation of this look at the back of the card. Once you understand how the sequences are generated you could use a spreadsheet to continue the sequences.

A	
p	q
1	
2	1
5	3
12	7
29	17
70	41
169	99
408	239
985	577
2378	1393
	3363

B	
p	q
4	7
11	15
26	37
63	89
152	215
367	519
886	1253
2139	3025
5164	7303
12467	17631

C	
p	q
7	
17	10
41	24
99	58
239	340
577	816
1393	1970
3363	4756
8119	11482
19601	27720

2. The ratios of q / p in sequences A, B and C are:

The sequence of the ratios q / p converges to $\sqrt{ } 2$.
3. Using the same rule to generate your own sequences you should find that the ratio of the q / p converges to $\sqrt{2}$.
4. For sequence D the rule for q is 'add the new p and twice the old p '.

Sequence D

p	q
1	1
2	4
\vdots	\vdots
\dot{x}	\dot{y}
$x+y$	$3 x+y$
\vdots	\vdots
.	.

Successive ratios q / p will be of the form y, $\underline{3 x+y}$... The sequence q / p again converges this time to 1.7320508 .

1389 Converging Sequences (cont)

Using the same rule to generate your own sequences you should find that the ratio of the q / p converges to $\sqrt{ } 3$.
The justification of this is:

$$
\frac{y}{x}=\frac{3 x+y}{x+y}
$$

then

$$
y(x+y)=x(3 x+y)
$$

therefore

$$
x y+y^{2}=3 x^{2}+x y
$$

$$
y^{2}=3 x^{2}
$$ $\frac{y^{2}}{x^{2}}=3$

therefore

$$
\frac{y}{x}=\sqrt{3}
$$

5. You may have used rules for q such as:

- 'add the new p and three times the old p ' when the ratio q / p tends to the limit $\sqrt{4}$, or
- 'add the new p and four times the old p ' when the ratio q / p tends to the limit $\sqrt{5}$...
You should be able to understand what is happening to the ratio q / p using the back of the card.

6. The sequence $y, \quad \frac{2 x+y}{x+y} \quad \ldots$ tends to the limit $\sqrt{ }$.
and $\quad y \quad \underline{3 x+y} \quad \ldots$ tends to the limit $\sqrt{3}$.
and $\quad \frac{y}{x} \quad \frac{4 x+y}{x+y} \quad \cdots$ tends to the limit $\sqrt{4}$.
This suggests that a sequence of the form
$\begin{array}{llll}y & \frac{\mathrm{n} x+y}{x+y} & \ldots & \text { will tend to the limit } \sqrt{ } \mathrm{n} .\end{array}$
You can generate the square roots of any number in this way (to whatever accuracy you require).
e.g. to find an approximation for $\sqrt{ } 7$, construct the sequence,

p	q	p	q	q / p
.	.	1	4	4
		5	11	2.2
		16	46	2.875
		62	158	2.5483871
x	y	220	592	2.69090909
$x+y$	$7 x+y$	812	2132	2.62561576
		2944	7816	2.6548913
-		10760	28424	2.64163569
-	-	39184	103744	2.64761127
-	-	142928	378032	2.64491212
		520960	1378528	2.64613022
		1899488	5025248	2.64558028
		6924736	18321664	2.64582852
		25246400	66794816	2.64571646

The ratio q / p tends to a limit of $2.64571646 \propto \sqrt{ } 7$

1390 Table Facts

Here is a completed table. You should learn the table facts which you do not know already.

${ }^{1 \times 1}$	2×1	${ }^{3 \times 1}$	4×1	${ }^{5 \times 1}$				9×1	${ }^{10 \times 1}$
1	2	3	4					9	10
1×2	2x2	3x2	4×2	5×2	6x2	7×2	${ }^{8} 2$		
2	4	6	8	10	12	14	16	18	20
1x3	2×3	${ }^{3 \times 3}$	4×3	5×3					10×3
3	6	9	12	15	18	21	24		
	2×4	3×4							
4	8	12	16	20	24	28	32	36	40
	2×5	${ }^{3 \times}$	4x						0x
5	10	15	20	25	30	35	40	45	50
	2x	3x							
6	12	18	24	30	36	42	48	54	
	2×7	${ }^{38}$	4x7			7x			
7	14	21	28	35	42	49	56	63	
	$1{ }^{2 \times}$								
8	16	24	32	40	48	56	64	72	80
	2x9								
9	18	27	36	45	54	63	72	81	
	2x10		4×10					9×10	
10	20	30	40	50	60	70	80	90	

1394 Turn the Tables

1. Here are some of the multiplication facts for numbers which appear several times each.

$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	10	$\mathbf{1 2}$	16
1×4	2×3	2×4	2×5	1×12	2×8
4×1	3×2	4×2	5×2	12×1	8×2
2×2	1×6	1×8	1×10	2×6	4×4
	6×1	8×1	10×1	6×2	
				3×4	
				4×3	
18	20	24	30	36	40
2×9	2×10	2×12	3×10	3×12	4×10
9×2	10×2	12×2	10×3	12×3	10×4
3×6	4×5	4×6	5×6	4×9	5×8
6×3	5×4	6×4	6×5	9×4	8×5
		3×8		6×6	
		8×3			

2. The numbers $1,4,9,16,25,36,49,64,81,100,121$ and 144 appear an odd number of times. These are the square numbers.
Where do they occur?
Why do they appear an odd number of times?

1394 Turn the Tables (cont)

3. The line of symmetry is the leading diagonal and goes through the square numbers.

The table is symmetrical about this line because the multiplication fact for two numbers is the same, no matter which way round you write them.
e.g. 3×7 gives the same result as 7×3.

This is called commutativity. The result is not changed by altering the order of the numbers.
Multiplication of numbers is commutative.
4. The numbers which do not appear in the table are $13,17,23,31,37,41,43,47$.

These are prime numbers. They do not appear in the table because a prime number only has two factors, itself and 1. The only prime numbers which appear in the table are those less than twelve. Why is this?

1395 Multiplication Table Patterns

1.

12	18	24	30	36
14	21	28	35	42
16	24	32	40	48
18	27	36	45	54

2. a) $9+16+20+27=72$
$9+16+20+27=72$
$8+10+24+30=72$
$18 \times 4=72$

4	5	6
8	10	12

32	36
40	45

$18 \times 4=72$

The sum of the four 'corner' numbers and the sum of the four 'middle' numbers are both the same as $4 x$ the 'corner' numbers.
This is true for all 3×3 squares taken from this table.
b) There are five other sets of four numbers which add up to 75, making six in all. They are all sets which exhibit 180° rotational symmetry.

1395 Multiplication Table Patterns (cont)

2. c) Sets of four numbers with the same sum can be found in all sizes of rectangles. The sets always exhibit 180° rotational symmetry. e.g. For this rectangle

1	2	3	4	5
2	4	6	8	10
3	6	9	12	15

the following sets of four numbers sum to 24.

In the case of rectangles with an odd number of squares, the sum is always 4 times the 'centre' number, e.g. all the sets of four add up to 4×6.
3. $15 \times 42=630$
$30 \times 21=630$
Opposite corners always give the same product, no matter what the size of the rectangle is. This can be explained by remembering that any number in the table is the multiple of two numbers.

e.g. | 15 | 20 | 25 | 30 |
| :--- | :--- | :--- | :--- |
| 18 | 24 | 30 | 36 |
| 21 | 28 | 35 | 42 |

so if you multiply 15×42 you are, in fact multiplying (5×3) $\times(7 \times 6)$.

If you multiply 21×30 you are multiplying $(7 \times 3) \times(5 \times 6)$.

- Multiplication of numbers is commutative, so these products are the same. In general, any rectangle from the table is of the form

and so product of the opposite corners will be pqmn.

1396 Two Digit Sums

3 digits

The ratio $\frac{x}{y}$ is always 22 .
Here is the proof using a, b and c to stand for the 3 digits.
There are 6 different possible numbers:
$10 a+b$
$10 b+a$
$10 c+a$
$10 a+c$
$10 b+c$
$10 c+b$
so $x=10 a+b+10 a+c+10 b+a+10 b+c+10 c+a+10 c+b$

$$
\begin{aligned}
& =22 a+22 b+22 c \\
& =22(a+b+c) \\
y & =a+b+c
\end{aligned}
$$

$$
\text { So } \begin{aligned}
\underline{x} & =\frac{22(a+b+c)}{a+b+c} \\
& =22
\end{aligned}
$$

4 digits or more

With 4 digits there are 12 different numbers possible two digit numbers and $\frac{x}{y}=33$.
With 5 digits there are 20 different numbers possible two digit numbers and $\frac{x}{y}=44$.
This table gives fuller details.

Number of digits	Possible 2-digit numbers		x	y	$\frac{x}{y}$
2	$10 a+b$	$10 b+a$	$11(a+b)$	$a+b$	11
3	$\begin{aligned} & 10 a+b \\ & 10 b+c \\ & 10 a+c \end{aligned}$	$\begin{aligned} & 10 b+a \\ & 10 c+b \\ & 10 c+a \end{aligned}$	$22(a+b+c)$	$a+b+c$	22
4	$\begin{aligned} & 10 a+b \\ & 10 b+c \\ & 10 a+c \\ & 10 a+d \\ & 10 b+d \\ & 10 d+c \end{aligned}$	$\begin{aligned} & 10 b+a \\ & 10 c+b \\ & 10 c+a \\ & 10 d+a \\ & 10 d+b \\ & 10 c+d \end{aligned}$	$33(a+b+c+d)$	$a+b+c+d$	33
5 . \cdot n	$\begin{gathered} 10 a+b \\ 10 b+c \\ 10 a+c \\ \cdot \\ \cdot \\ n(n-1) \end{gathered}$	$\begin{aligned} & 10 b+a \\ & 10 c+b \\ & 10 c+a \end{aligned}$	$44(a+b+c+d+e)$ $11(n-1)(a+b+\ldots)$	$a+b+c+d+e$ $(a+b+\ldots)$	$\begin{gathered} 44 \\ \\ \cdot \\ \cdot \\ 11(n-1) \end{gathered}$

- If you repeat digits it could confuse the results. For instance, if you start with the digits 3,3 and 9 the only different two digit numbers are 33,39 and 93 . If you treat each digit quite separately (imagine three pieces of paper), then you will get all the possible combinations, $33,33,39,39,93$ and 93 .

1398 Trigg

- Did it matter who went first?
- Can you describe the strategy you used to win?

1399 Babylonian Method

Original Problem

$\mathrm{L} \times \mathrm{W}=192$
$\mathrm{L}+\mathrm{W}=28$
Nowadays you are likely to solve problems like this using a spreadsheet.
Here are the formulas used to solve the original problem.

	A	B	C	D
1	length (L)	width (W)	L + W	L \times W
2	1	=28-A2	$=A 2+B 2$	=A2*B2
3	= $22+1$	=28-A3	$=\mathrm{A} 3+\mathrm{B} 3$	$=\mathrm{A} 3 * \mathrm{~B} 3$
	\downarrow	\downarrow	\downarrow	\downarrow

Here is part of the spreadsheet.

Looking at the spreadsheet you can see the unique solution where $\mathrm{L} \times \mathrm{W}=192$ is $\mathrm{L}=12$ and $\mathrm{W}=16$.

1. You can use your original spreadsheet to find that the unique solution where $\mathrm{L} \times \mathrm{W}=180$ is $\mathrm{L}=18 \mathrm{~cm}$ and $\mathrm{W}=10 \mathrm{~cm}$. Remember to check your solution by putting the values you have found back into the original statement.

Alternatively, you can use the Babylonian Method
i) Half of $28=14$
ii) $14 \times 14=196$
iii) $196-180=16$
iv) Square root of $16=4$
v) $14+4=18 ; \quad$ Length $=18 \mathrm{~cm}$
vi) $14-4=10 ; \quad$ Width $=10 \mathrm{~cm}$

Check: $18 \times 10=180$
2. By changing the formula for width you can adapt your spreadsheet.

Using the Babylonian Method
i) Half of 37 is 18.5
ii) $18.5 \times 18.5=342.25$
iii) $342.25-336=6.25$
iv) Square root of $6.25=2.5$

Check: $21 \times 16=336$
3. The missing instruction is 'square' or 'multiply by itself'.
4.

5.

1399 Babylonian Method (cont)

6. $\mathrm{W}=\frac{\mathrm{s}}{2}-\sqrt{\frac{\mathrm{s}^{2}}{4}-\mathrm{p}}$
7. $\mathrm{L} \times \mathrm{W}=\left(\underline{\underline{s}}+\sqrt{\underline{s}^{2}-\mathrm{p}}\right)\left(\underline{\underline{s}}-\sqrt{\underline{s}^{2}-\mathrm{p}}\right) \quad$ This line is equivalent to $(x+y)(x-y)$ which equals $x^{2}-y^{2}$ so you might have omitted line 2 .
$=\frac{s}{2}^{2}+\frac{\underline{s}}{2} \sqrt{\frac{s^{2}}{4}-p}-\frac{s^{2}}{2} \sqrt{\frac{s}{4}-p}-\left(\frac{s^{2}}{4}-p\right)$
$={\frac{\mathbf{s}^{2}}{4}}_{4}-\left(\underline{\mathrm{s}}^{2}-\mathrm{p}\right)$
$=p$
8. a) $s=27 \mathrm{~cm}$
$\mathrm{p}=180 \mathrm{~cm}$
$\mathrm{L}=\frac{27}{2}+\sqrt{\frac{729}{4}-180}$
$=15 \mathrm{~cm}$
$W=\frac{27}{2}-\sqrt{\frac{729}{4}-180}$
$=12 \mathrm{~cm}$
b) $\mathrm{s}=6.3 \mathrm{~cm}$
$\mathrm{p}=8.82 \mathrm{~cm}^{2}$
$\begin{aligned} \mathrm{L} & =\frac{6.3}{2}+\sqrt{\frac{39.69}{4}-8.82} \\ & =4.2 \mathrm{~cm}\end{aligned}$
$=4.2 \mathrm{~cm}$
$\mathrm{W}=\frac{6.3}{2}-\sqrt{\frac{39.69}{4}-8.82}$
$=2.1 \mathrm{~cm}$
c) $\mathrm{s}=64.5 \mathrm{~cm}$
$\mathrm{p}=845.46 \mathrm{~cm}^{2}$
$\mathrm{L}=\frac{64.5}{2}+\sqrt{\frac{4160.25}{4}-845.46}$
$=46.2 \mathrm{~cm}$
$W=\frac{64.5}{2}-\sqrt{\frac{4160.25}{4}-845.46}$
$=18.3 \mathrm{~cm}$

1399 Babylonian Method (cont)

9. Equation $1 \quad \mathrm{~L}+\mathrm{W}=\mathrm{s}$

Equation $2 \quad L W=p$

$$
\begin{array}{ll}
\text { From equation } 1, & W=s-L \\
\text { Substitute this for } W \text { in equation } 2 . & L(s-L)=p \\
& L s-L^{2}=p \\
& L^{2}-L s+p=0
\end{array}
$$

Using the quadratic formula gives two solutions.

$$
\mathrm{L}=\frac{\mathrm{s} \pm \sqrt{s^{2}-4 p}}{2}
$$

Similarly for W there are two solutions.

$$
W=\frac{s \pm \sqrt{s^{2}-4 p}}{2}
$$

Our modern algebraic equations give both answers as the root of one equation. The length and width are the two solutions of

$$
L=\frac{s \pm \sqrt{s^{2}-4 p}}{2}
$$

Dividing the numerator by 2 gives the combined solution for the Babylonian method.

$$
L=\frac{s}{2} \pm \sqrt{\frac{s^{2}}{4}-p}
$$

- The Babylonians did not recognise that a square root could be positive or negative. They had no concept of negative numbers. Negative numbers were not accepted until after 1500AD.

1400 A Transformation Technique

1. a) You should have found that pre-multiplication by the matrix $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$ has the
b) This is the general case, describing the operation on any pair.
2.

a) $\binom{1}{0} \rightarrow\binom{2}{0}$
$\binom{0}{1} \rightarrow\binom{0}{2}$
b) So the transformation matrix is $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
c) This should confirm that $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ describes the transformation.

1400 A Transformation Technique (cont)

3. Some examples are:
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad$ The identity matrix causing no change
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad$ Reflects in the line $y=x$.
$\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right) \quad$ Rotation of 180° about the origin.
$\left(\begin{array}{ll}\mathrm{a} & 0 \\ 0 & \mathrm{a}\end{array}\right) \quad$ Enlargement with scale factor a and centre $(0,0)$.
There are many other matrices so ask your teacher to check any others.
4. $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{0}=\binom{a}{c}$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{0}{1}=\binom{b}{d}
$$

1404 Action Equations

A 1. $\mathrm{n}=3$
6. $\mathrm{n}=7$
2. $n=5$
7. $n=6$
3. $\mathrm{n}=11$
8. $\mathrm{n}=7$
4. $\mathrm{n}=8$
9. $\mathrm{n}=10$
$5 \mathrm{n}=8$
10. $n=6$

B 1. $\mathrm{n}=8$
6. $\mathrm{n}=22$
2. $n=6$
7. $n=20$
3. $\mathrm{n}=5$
8. $\mathrm{n}=19$
4. $\mathrm{n}=8$
9. $\mathrm{n}=18$
5. $n=6$
10. $\mathrm{n}=19$

1405 Jump Equations

A 1. $\mathrm{n}=5$
2. $n=4$
3. $\mathrm{n}=7$
4. $\mathrm{n}=3$
5. $n=3$

B

1. $\mathrm{n}=9$
2. $\mathrm{n}=24$
3. $\mathrm{n}=13$
4. $\mathrm{n}=17$
5. $\mathrm{n}=14$
6. $n=14$
7. $\mathrm{n}=18$
8. $\mathrm{n}=15$
9. $\mathrm{n}=12$
10. $\mathrm{n}=17$

1406 Equality and Inequality
A 1. $8+3=3+8$
6. $3 \times 6=6 \times 3$
2. $4+9=9+4$
7. $10 \div 2 \neq 2 \div 10$
3. $7-4 \neq 4-7$
8. $18-10 \neq 10-18$
4. $6 \times 7=7 \times 6$
9. $21 \div 3 \neq 3 \div 21$
5. $4+0=0+4$
10. $14-6 \neq 6-14$

B 1. $27+14=14+27$
6. $\frac{1}{2}+\frac{1}{4}=\frac{1}{4}+\frac{1}{2}$
2. $36-49 \neq 49-36$
7. $\frac{1}{2}-\frac{1}{4} \neq \frac{1}{4}-\frac{1}{2}$
3. $15 \div 5 \neq 5 \div 15$
8. $0.6+0.3=0.3+0.6$
4. $15 \times 5=5 \times 15$
9. $0.5-0.2 \neq 0.2-0.5$
5. $100 \div 10 \neq 10 \div 100$
10. $1 \div 2 \neq 2 \div 1$

- The operation of subtraction is not commutative.
- The operation of multiplication is commutative.
- The operation of division is not commutative.

$\mathrm{A}=7^{\circ} \mathrm{C}$	$\mathrm{B}=14^{\circ} \mathrm{C}$	$\mathrm{C}=21^{\circ} \mathrm{C}$	$\mathrm{D}=29^{\circ} \mathrm{C}$
$\mathrm{E}=38^{\circ} \mathrm{C}$	$\mathrm{F}=48^{\circ} \mathrm{C}$	$\mathrm{G}=56^{\circ} \mathrm{C}$	$\mathrm{H}=63^{\circ} \mathrm{C}$
$\mathrm{J}=82^{\circ} \mathrm{C}$	$\mathrm{K}=94^{\circ} \mathrm{C}$		
$\mathrm{L}=44^{\circ} \mathrm{F}$	$\mathrm{M}=58^{\circ} \mathrm{F}$	$\mathrm{N}=86^{\circ} \mathrm{F}$	$\mathrm{P}=92^{\circ} \mathrm{F}$
$\mathrm{Q}=108^{\circ} \mathrm{F}$	$\mathrm{R}=124^{\circ} \mathrm{F}$	$\mathrm{S}=134^{\circ} \mathrm{F}$	$\mathrm{T}=154^{\circ} \mathrm{F}$
$\mathrm{U}=172^{\circ} \mathrm{F}$	$\mathrm{V}=198^{\circ} \mathrm{F}$		

The Fahrenheit scale goes up in 2's and the Celsius scale goes up in 1's, so you need to be very careful when reading off the scales.

		a)		b)			a)		b)
A	=	$18^{\circ} \mathrm{F}$	=	$-8^{\circ} \mathrm{C}$	B	=	$32^{\circ} \mathrm{F}$	=	$0^{\circ} \mathrm{C}$
C	=	$46^{\circ} \mathrm{F}$	=	$8^{\circ} \mathrm{C}$	D	=	$64^{\circ} \mathrm{F}$	=	$18^{\circ} \mathrm{C}$
E	=	$76^{\circ} \mathrm{F}$	=	$24^{\circ} \mathrm{C}$	F	=	$90^{\circ} \mathrm{F}$	$=$	$32^{\circ} \mathrm{C}$
G	$=$	$102^{\circ} \mathrm{F}$	=	$39^{\circ} \mathrm{C}$	H	=	$126^{\circ} \mathrm{F}$	=	$52^{\circ} \mathrm{C}$

1409 The Mean

1. 31
2. 32
3. 86.333333 or 86.3 which to the nearest car is 86 .
4. $25 p$

1411 Roman Numerals

1. 2
2. 12
3. 7
4. 20
5. 35
6. 26
7. 8
8. 38
9. The most likely explanation seems to be that V is half of the symbol X. Perhaps the symbol X was used first.
10. 200
11. 3000
12. 150
13. 155
14. 1251
15. 1361
16. 1666
17. 2008
18. CM means 100 less than 1000.
19. 90 because it means 10 less than 100 .
20. MCM means 1000 and 100 less than 1000.
21. 19
22. 190
23. 2900
24. 2923
25. 79
26. 1559

27 Normally the symbols are written from left to right in decreasing order with the higher symbols first. With 9,90 or 900 it seems as if one of the smaller symbols is out of order.
28. IV means 1 less than 5 .
29. 94
30. 1984

1412 Algebra Puzzle

1. Whatever number you start with, the answer is always 1 .

Questions 2 and 3 will help explain why.
3. Let x stand for any number to start.

1412 Algebra Puzzle (cont)

4. Your flag chart should look like this. Let p stand for any number.

Whatever value you start with the answer is always 0 .
Add 2

$$
\rightarrow \quad p+2
$$

Multiply by $3 \rightarrow 3(p+2)=3 p+6$
Subtract $6 \rightarrow 3 p$
Divide by $3 \rightarrow \frac{3 p}{3}=p$
Subtract $p \quad \rightarrow \quad 0$
So, whatever number you start with, the answer will always be zero.
5. There are many possible answers.

Check your game by testing it with an integer, a fraction or decimal, a negative number and a letter.

1413 Twelve Inch Perimeter

1. There are 25 different shapes, all with a perimeter of 12 inches.

Using 5 squares:

Using 6 squares:

Using 7 squares:

1413 Twelve Inch Perimeter (cont)

Using 8 squares:

Using 9 squares:

2. There are two shapes using 8 squares which have a perimeter of 12 inches.

There are seven shapes using 6 squares which have a perimeter of 12 inches.
3. The biggest shape has 9 squares.

The smallest shapes have 5 squares.

1415 Simple Quadratics

1\&2. $(x+k)(x+m)=x^{2}+(k+m) x+k m$ and so the multiplication gives a quadratic expression of the form $x^{2}+b x+c$.
Occasionally, the result is of the form $x^{2}+c$.

- What values of k and m cause the term ' $b x$ ' to disappear?

3.

4. $x^{2}+29 x+100=(x+25)(x+4)$
$x^{2}-29 x+100=(x-25)(x-4)$
$x^{2}-52 x+100=(x-50)(x-2)$
$x^{2}-48 x-100=(x-50)(x+2)$
$x^{2}+15 x-100=(x+20)(x-5)$
$x^{2}-20 x+100=(x-10)(x-10)$ or $(x-10)^{2}$
$x^{2}-100=(x-10)(x+10)$
5. For $x^{2}+5 x+6 \quad k=3$ and $m=2$ or vice versa

For $x^{2}+8 x+16 \quad k=4$ and $m=4$
For $x^{2}-8 x+16 \quad k=-4$ and $m=-4$
For $x^{2}-16 \quad k=-4$ and $m=4$ or vice versa
For $x^{2}-25 \quad k=-5$ and $m=5$ or vice versa

1415 Simple Quadratics (cont)

6. The values of b and c depend upon k and m.

The coefficient of x, b is the sum of k and $m(k+m)$.
The constant term, c is the product of k and $m(k \times m)$.
7. If k and m are equal but opposite in sign, b will be zero.

$$
\text { e.g. if } k=7 \text { and } m=-7 \quad(x+7)(x-7) \quad=\quad x^{2}-49
$$

8. If either k or m are zero, then c will be zero.

$$
\text { e.g. if } k=3 \text { and } m=0 \quad(x+3)(x+0)=(x+3) x=x^{2}+3 x
$$

9. Both k and m have to be zero to make b and c both zero.
10. $x=0$ or $x=-11$
11. $(x+7)(x+4)=40 \rightarrow x$ could be 1 (or -12)
$(x+7)(x+4)=70 \quad \rightarrow \quad x$ could be 3 (or -14)
$(x+7)(x+4)=18 \quad \rightarrow \quad x$ could be -1 (or -10)
$(x+7)(x+4)=4 \quad \rightarrow \quad x$ could be -3 (or -8)
12. $(x+7)(x+4)=70 \rightarrow x$ could also be - 14 (or 3)
13. $(x+7)(x+4)=0 \quad \rightarrow \quad x$ could be -7 or x could be -4
14. Any 6 pairs of numbers in the form

$$
\begin{aligned}
& \text { number } \times \text { zero }=\text { zero } \\
& \text { or } \quad \text { e.g. } 5 \times 0=0 \\
& \text { zero } \times \text { zero }=\text { zero }
\end{aligned}
$$

15. $(x+7)$ is 3 more than $(x+4)$ so they both can't be zero.
a) $x=-7$ would make the left-hand bracket zero.
b) $x=-4$ would make the right-hand bracket zero.
16. a) $x=-3$
b) $x=-5$
17. a) $x=-3$ or $x=-5$
b) $x=3$ or $x=5$
c) $x=3$ or $x=-5$
18. $(x+k)(x+m)=0 \quad$ if $x=-k \quad$ or $\quad x=-m$
19. $(x+3)(x+12)=0 \quad x=-3 \quad$ or $\quad x=-12$
$(x-3)(x-12)=0 \quad x=3 \quad$ or $\quad x=12$
$(x-5)(x+7)=0 \quad x=5 \quad$ or $\quad x=-7$
$x^{2}+5 x+6=0 \quad \rightarrow \quad(x+3)(x+2)=0 \quad x=-3 \quad$ or $\quad x=-2$
$x^{2}+15 x-100=0 \rightarrow(x+20)(x-5)=0 \quad x=-20 \quad$ or $\quad x=5$
$x^{2}+8 x+12=0 \quad \rightarrow \quad(x+6)(x+2)=0 \quad x=-6 \quad$ or $\quad x=-2$

1415 Simple Quadratics (cont)

20. $x^{2}+8 x+14=2$

Subtract 2 from each side of the equation.

$$
x^{2}+8 x+12=0 \quad x=-6 \quad \text { or } \quad x=-2
$$

21. $x^{2}+15 x=100$

Subtract 100 from each side of the equation.

$$
x^{2}+15 x-100=0 \quad x=-20 \quad \text { or } \quad x=5
$$

22. a) $x^{2}-48 x=100$

Subtract 100 from each side.
$x^{2}-48 x-100=0 \quad x=50 \quad$ or $\quad x=-2$
b) $x^{2}+100=29 x$

Subtract $29 x$ from each side.
$x^{2}-29 x+100=0 \rightarrow(x-25)(x-4)=0 \quad x=25 \quad$ or $\quad x=4$
c) $x^{2}+5 x-84=0 \quad \rightarrow \quad(x-7)(x+12)=0 \quad x=7 \quad$ or $\quad x=-12$
d) $x^{2}+5 x=50$
$x^{2}+5 x-50=0 \quad \rightarrow \quad(x+10)(x-5)=0 \quad x=-10 \quad$ or $\quad x=5$
e) $x^{2}=11 x-10$
$x^{2}-11 x+10=0 \quad \rightarrow \quad(x-10)(x-1)=0 \quad x=10 \quad$ or $\quad x=1$
f) $x^{2}-8 x+16=0 \quad \rightarrow \quad(x-4)^{2}=0 \quad x=4$
g) $2 x^{2}-14 x+24=0$

Divide each side by 2
$x^{2}-7 x+12=0$
$\rightarrow \quad(x-3)(x-4)=0$
$x=3$
or $\quad x=4$

- Read the Next Step carefully and check you understand it. You may find the Summary on the last page useful in helping you to produce revision notes.

1417 Tens

Were you able to make two lines of 10 by placing one counter?
e.g. by placing a 2 here \rightarrow
 you would get
two lines of ten.

```
Page 1
Area \(B=\frac{1}{4} \quad\) Area \(C=\frac{1}{8}\)
```

$$
\begin{aligned}
& \text { Area A + Area B + Area C + Area D }+\ldots=1 \\
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots=1
\end{aligned}
$$

- The nth term of this series is $\left(\frac{1}{2}\right)^{n}$.
- The series never stops. It is infinite.

Page 2

B is $\underline{3}$ of the area that is not A.
4

So B is $\frac{3}{4}$ of $\frac{1}{4}$, which is $\frac{3}{16}$.
C is $\frac{3}{4}$ of the area that is not A and not B.
So C is $\frac{3}{4}$ of $\frac{1}{16}$, which is $\frac{3}{64}$.

```
    Area A : Area B
= 4 : 1
A
= 2 : 1
```

The scale factor of enlargement of B to A is $\mathbf{x} 2$
A scale factor of $x 4$ would enlarge C to A.

$$
\begin{aligned}
& \text { Area A + Area B + Area C + Area D }+\ldots=1 \\
& \frac{3}{4}+\frac{3}{16}+\frac{3}{64}+\frac{3}{256}+\ldots=1
\end{aligned}
$$

The general form of this series is $\frac{3}{4^{n}}$

Page 3

A scale factor of $x^{\frac{1}{2}}$ would reduce A to B.
A scale factor of $x^{\frac{1}{4}}$ would reduce A to C.
A scale factor of $x^{\frac{1}{2}}$ would reduce B to C.

Page 3 (cont)
Area B $=\frac{1}{2}\left(\frac{1}{4} \times \frac{1}{4}\right)=\frac{1}{32} \quad B$ is $\frac{1}{4}$ of A.
Area C $=\frac{1}{128}$
C is $\frac{1}{16}$ of A .
Area D $=\frac{1}{512}$
The whole triangle has area 1. 2
$3($ Area $A)+3($ Area $B)+3($ Area $C)+3($ Area D $)+\ldots=\frac{1}{2}$
$\frac{3}{8}+\frac{3}{32}+\frac{3}{512}+\frac{3}{2048}+\ldots=\frac{1}{2}$

Page 4

You may find it quicker to use a spreadsheet to check that the series on pages 1,2, and 3 never exceed the limit one.
e.g.

	A	B	C	D
1	Numerator	Denominator	Decimal	Cumulative Total
2	1	2	0.5	0.5
3	1	4	0.25	0.75
4	1	8	0.125	0.875
5	1	16	0.0625	0.9375
6	1	32	0.03125	0.96875
7	1	64	0.015625	0.984375
8	1	128	0.0078125	0.9921875
9	1	256	0.00390625	0.99609375
10	1	512	0.001953125	0.998046875
11	1	1024	0.000976563	0.999023438
12	1	2048	0.000488281	0.999511719
13	1	4096	0.000244141	0.999755859
14	1	8192	0.00012207	0.99987793
15	1	16384	6.10352E-05	0.999938965
16	1	32768	3.05176E-05	0.999969482
17	1	65536	$1.52588 \mathrm{E}-05$	0.999984741
18	1	131072	7.62939E-06	0.999992371
19	1	262144	3.8147E-06	0.999996185
20	1	524288	1.90735E-06	0.999998093

The last six cells of the spreadsheet in column C display the number in Standard Form.
e.g. $6.10352 \mathrm{E}-05=6.10352 \times 10^{-5}=0.0000610352$

1418 Series Geometrically (cont)

Page 5

Several answers are possible.

- If you assumed the dimensions of the triangle to have the height twice the base, the total area would be 1 square unit.

- One series can be made by considering lines parallel to the hypotenuse:

The first pair of triangles (shaded) together have area $\frac{8}{9}$ and the remaining triangle (unshaded) is $\frac{1}{9}$ of the original triangle.

The scale factor is therefore $\times \frac{1}{3}(\sqrt{9})$ and this gives the series:

$$
\frac{8}{9}+\frac{8}{81}+\frac{8}{729}+\frac{8}{6561}=\cdots=1
$$

- Another series might start with the large shaded triangle of area ${ }^{\frac{2}{3}} \ldots$

1419 Versa-tiles

The angle combinations which are possible with the pentagon tile makes it very versatile indeed.
There are 11 different combinations which total to 360°.
These are:

$$
\begin{array}{lll}
\left(6 \times 60^{\circ}\right) & \left(3 \times 100^{\circ}\right)+60^{\circ} & \left(3 \times 60^{\circ}\right)+100^{\circ}+80^{\circ} \\
\left(2 \times 100^{\circ}\right)+160^{\circ} & \left(2 \times 60^{\circ}\right)+100^{\circ}+140^{\circ} & \left(2 \times 100^{\circ}\right)+\left(2 \times 80^{\circ}\right) \\
\left(2 \times 60^{\circ}\right)+160^{\circ}+80^{\circ} & \left(2 \times 140^{\circ}\right)+80^{\circ} & \left(2 \times 60^{\circ}\right)+\left(3 \times 80^{\circ}\right) \\
\left(2 \times 80^{\circ}\right)+60^{\circ}+140^{\circ} & 60^{\circ}+160^{\circ}+140^{\circ} &
\end{array}
$$

Make a wall display using your tiling patterns.

1420 Perpendicular Proof

You may want to use a geometry drawing computer package for your initial exploration.

For any point P inside the equilateral triangle $A B C$:

- Area of $\triangle \mathrm{BPC}=\frac{1}{2} a x$
- Area of $\triangle \mathrm{APB}=\frac{1}{2} a y$
- Area of $\triangle \mathrm{APC}=\frac{1}{2} a z$

Therefore $\triangle \mathrm{APC}+\triangle \mathrm{APB}+\Delta \mathrm{BPC}=\frac{1}{2} a x+\frac{1}{2} a y+\frac{1}{2} a z=\frac{1}{2} a(x+y+z)$
Therefore area of $\triangle \mathrm{ABC}=\frac{1}{2} a(x+y+z)$.
We know that the area of a given triangle does not change.
Therefore ${ }^{\frac{1}{2}} a(x+y+z)$ is constant value for a given equilateral triangle.
We also know that $\frac{1}{2} a$ is a constant value for this triangle.
Therefore $(x+y+z)$ must also be constant.
This is sufficient proof for any equilateral triangle.

1421 Shapes from Squares

With 4 squares these 5 shapes can be made.

With 5 squares, 12 shapes can be made.
You will need to organise your work carefully to find them all.
There are many more shapes which can be made with 6 squares.
To organise your work, one way is to start with a line of $6 \ldots$
\square
... then a line of 5 with 1 other

... then a line of 4 with 2 others

... and so on.

1421 Shapes from Squares (cont)

This mapping shows the results collected.

No. of squares used		No. of different shapes made
1	\rightarrow	1
2	\rightarrow	1
3	\rightarrow	2
4	\rightarrow	5
5	\rightarrow	12
6	\rightarrow	$?$

1422 Rectangle in Circles

It is possible to draw many rectangles in a 12-point circle, but there are only 3 different ones.

There are only 4 different rectangles in a 16-point circle.

1423 Calculator Guesses

1. $137 \times 7=685$
2. $21 \times 46=966$
3. $7 \times 21=147$
4. $4956=354 \times 14$
5. $19 \times 13=247$
6. $12 \times 214=2568$
7. $23 \times 23=529$
8. $25 \times 25=625$
9. $24 \times 16=384$
10. $25 \times 250=6250$

1424 Dividing by Guessing

1. $\mathbf{6 4 \div 1 6 = 4}$
2. $104 \div 8=13$
3. $84 \div 7=12$
4. $54 \div 9=6$
5. $56 \div 7=8$
6. $105 \div \mathbf{1 5}=7$
7. $168 \div 3=56$
8. $52 \div 4=13$
9. $144 \div \mathbf{2 4}=\mathbf{6}$
10. $81 \div 9=9$
11. $520 \div \mathbf{1 0}=52$
12. $75 \div 5=15$
13. $136 \div \mathbf{1 7}=8$
14. $90 \div 6=15$
15. $136 \div 8=17$

1425 A Rich Aunt

A table is a good way to compare the amount of money you would get from each scheme in each year. A spreadsheet can be used to create a table and then to graph the results.

This spreadsheet shows the amount of money Scheme (a) will generate up to the time when Aunt Lucy reaches 80 years of age.

	A	B	C
1		Scheme (a)	
2	Aunt's age	Amount each year	Cumulative Total
3	70	£ 100.00	£ 100.00
4	71	£ 90.00	£ 190.00
5	72	£ 80.00	£ 270.00
6	73	£ 70.00	£ 340.00
7	74	£ 60.00	£ 400.00
8	75	£ 50.00	£ 450.00
9	76	£ 40.00	£ 490.00
10	77	£ 30.00	£ 520.00
11	78	£ 20.00	£ 540.00
12	79	£ 10.00	$£ 550.00$
13	80	£ 0.00	£ 550.00

What happens if Aunt Lucy lives beyond 80?
When Aunt Lucy reaches 81 will you continue to receive $£ 0.00$, or will you have to give Aunt Lucy $£ 10.00$?

1425 A Rich Aunt (cont)

This graph shows all the cumulative totals that each scheme will generate up to the time when Aunt Lucy reaches 80 years of age.

When Aunt is 80 years old

The scheme you choose will depend on how long you think Aunt Lucy is likely to live. If you compare the cumulative totals each year, you will see that, although scheme (c) and scheme (d) start off slowly, they accumulate rapidly in years to come. Scheme (c) overtakes (a) and (b) after about 7 years. Scheme (d) overtakes them all after 10 years.

It might therefore be wise to choose scheme (d) and to wish Aunt Lucy a long and healthy retirement!

1426 Decimal Lines

1. 1.6
2. 3.8
3. 0.6
4. 6.3
5. 0.2
6. 3.1
7. $2.5+0.5=3$
8. $0.9+0.4+0.8=2.1$
9. $1.6+0.3=1.9$
10. $2.4+1.7=4.1$
11. $0.7+2.1=2.8$
12. $1.5+2.8=4.3$
13. $1.4+0.6=2$
14. 3.3. $+1.8=5.1$
15. $1.3+1.7=3$
16. $0.6+0.8+0.7=2.1$

1427 Triangles in Circles

Because triangles like these are congruent (identical in shape and size) there are surprisingly few different triangles which can be drawn.

This mapping shows the results for the investigation up to 7-point circles:

No. of points on circle	No. of different triangles	
3	\rightarrow	1
4	\rightarrow	1
5	\rightarrow	2
6	\rightarrow	3
7	\rightarrow	4

However, the sequence is not so simple as it seems.
For example, in an 11-point circle there are 10 different triangles possible:
Different triangles with

shortest side of length 1. \begin{tabular}{l}
Different triangles with

shortest side of length 2.

\hline | Different triangles with |
| :--- |
| shortest side of length 3. |

\hline Total number of different triangles $5+3+2=10$

\hline
\end{tabular}

1427 Triangles in Circles (cont)

In a 16-point circle there are $7+6+4+3+1=19$ different triangles
This suggests that for a 12-point circle the number of different triangles could be
$5+4+3+1=13$ or $5+4+2+1=12$ or $5+4+2=11$

- Can you decide which it will be?
- Is your prediction correct?
- Does this lead to any generalisations?

A more fruitful way to show the relationship is:

No. of points on circle		No. of triangles
9	\rightarrow	$4+2+1$
10	\rightarrow	$4+3+1$
11	\rightarrow	$5+3+2$
12	\rightarrow	$5+4+2+1$

You will more readily understand this relationship if you can extend this mapping in both directions, and if you can answer these questions for an n-point circle:

- what difference does it make if n is even?
- what difference does it make if n is odd?
- what difference does it make if n is a multiple of 3 ?

1428 Sum and Product

These are the pairs of numbers up to 30 for which their sum is a factor of their product.

2,2	6,6	9,18	14,14	20,30	28,28
3,6	6,12	10,10	15,30	21,28	30,30
4,4	6,30	10,15	16,16	22,22	
4,12	8,8	12,12	18,18	24,24	
5,20	8,24	12,24	20,20	26,26	

In most cases one of the numbers is a multiple of the other. You could investigate which number pairs work when one of the numbers is double the other:

1,2	Sum =3;	Product $=2$	3 is not a factor of 2
2,4	Sum =6;	Product $=8$	6 is not a factor of 8
3,6	Sum =9;	Product $=18$	9 is a factor of 18
4,8	Sum =12;	Product $=32$	12 is not a factor of 32
5,10	Sum =15;	Product $=$	

Which number pairs work when one of the numbers is:

- treble the other?
- 4 times the other?
- equal to the other?
- ...?

1428 Sum and Product (cont)

If you need to generate higher number pairs, the following computer program will help:

10 FOR N = 1 TO 100
20 FOR M = N TO 100
$30 \mathrm{~S}=\mathrm{N}+\mathrm{M}$
$40 \mathrm{P}=\mathrm{N}^{*} \mathrm{M}$
50 IF P/S = INT(P/S) THEN PRINT N;M
60 NEXT M
70 NEXT N
If you have developed a successful, systematic approach for 2 numbers, you might be able to adapt the same approach for 3 numbers. You might also be able to adapt the computer program.

1429 Multiples of 3 and 9

1. 3

6
9
$12 \rightarrow 1+2=3$
$15 \rightarrow 1+5=6$
$18 \rightarrow 1+8=9$
$21 \rightarrow 2+1=3$
$24 \rightarrow 2+4=6$
$27 \rightarrow 2+7=9$
$30 \rightarrow 3+0=3$
$33 \rightarrow 3+3=6$
$36 \rightarrow 3+6=9$
$39 \rightarrow 3+9=12 \rightarrow 1+2=3$
$42 \rightarrow 4+2=6$
$45 \rightarrow 4+5=9$
$48 \rightarrow 4+8=12 \rightarrow 1+2=3$
$51 \rightarrow 5+1=6$
$54 \rightarrow 5+4=9$
$57 \rightarrow 5+7=12 \rightarrow 1+2=3$
$60 \rightarrow 6+0=6$
$63 \rightarrow 6+3=9$
$66 \rightarrow 6+6=12 \rightarrow 1+2=3$
$69 \rightarrow 6+9=15 \rightarrow 1+5=6$
$72 \rightarrow 7+2=9$
$99 \rightarrow 9+9=18 \rightarrow 1+8=9$
Adding up the digits of a number and if necessary, repeating the process until a single digit is formed is called finding the digital root.

By adding the digits to give the digital root you get a pattern which goes $3,6,9,3,6,9, \ldots$ The pattern works for multiples of 3 up to 100 .
2. $102 \rightarrow 1+0+2=3$
$105 \rightarrow 1+0+5=6$
$222 \rightarrow 2+2+2=6$
$225 \rightarrow 2+2+5=9$
$228 \rightarrow 2+2+8=12 \rightarrow 1+2=3$
$231 \rightarrow 2+3+1=6$

- Yes, the pattern still works.

3. $223 \rightarrow 2+2+3=7$
$224 \rightarrow 2+2+4=8$

- The pattern does not work unless the number is a multiple of 3 .

4.

$$
\begin{array}{rll}
9 & & \\
18 & \rightarrow & 1+8=9 \\
27 & \rightarrow & 2+7=9 \\
36 & \rightarrow & 3+6=9
\end{array}
$$

$$
\begin{array}{rlll}
99 & \rightarrow 9+9=18 & \rightarrow & 1+8=9 \\
108 & \rightarrow 1+0+8=9 \\
117 & \rightarrow 1+1+7=9 \\
126 & \rightarrow 1+2+6=9
\end{array}
$$

$$
\begin{aligned}
& 747 \rightarrow 7+4+7=18 \rightarrow 1+8=9 \\
& 756 \rightarrow 7+5+6=18 \rightarrow 1+8=9 \\
& 765 \rightarrow 7+6+5=18 \rightarrow 1+8=9
\end{aligned}
$$

The digital root for the multiples of 9 gives the pattern $9,9,9, \ldots$
5. $2+9+7+1+1+4+2+3+6=35 \rightarrow 3+5=8$

297114236 is not a multiple of 3 because its digital root is not a multiple of 3 .
6. $6+7+4+2+1+5+0+2=27 \rightarrow 2+7=9$

67421502 is a multiple of 9 because its digital root is a multiple of 9 .
7. If the digital root of your three numbers did not give you a multiple of 3 , then show your work to your teacher.
8. If the digital root of your numbers did not give you a multiple of 9 , then show your work to your teacher.

1430 Bounce

This is a game of luck, rather than skill.

- How many times did you bounce on 10 ?
- How many times did you bounce back?

1432 Triangle Patterns

1. a) $1 \times 1=1$
$11 \times 11=121$
$111 \times 111=12321$
$1111 \times 1111=1234321$
b) There are several patterns which will help you continue the pattern, without using a calculator.

- The number of digits is always odd.
- The number of digits increases by two each time.
- The centre digit increases by 1 each time.
- The centre digit is the same as the number of ones in the first number.
- Each row is a palindromic number.
- Each number starts and ends with a 1.
- The digits increase by one until the centre digit is reached.
- The sum of the digits is a square number.
c) The next number will have a 5 in the middle.

d) Most calculators can only display numbers with 8 digits or less, so in order to display the answer to 11111×11111, a calculator will show the answer in standard form.
 answers accurately.
A spreadsheet allows for more numbers to be displayed.
e) The first number has 10 digits, but you cannot have 10 in the middle as 10 has two digits.
The answer is 123456700987654321 and is no longer a palindrome.
Can you explain this answer?

1432 Triangle Patterns (cont)

2. a) This pattern gives
b) This pattern gives
9
1089

9
89
10
110889 1100 111000 11108889 11110000
c)

9
d)

99
108
1107
1188 12177
11106
122166
111105
1222155

e)

8
f)

42
96
4422
984
444222
9872
44442222
98760
4444422222
987648
9876536
3. Show your own patterns to your teacher.

How many ways could you describe them?

1433 Base - 2

A good start to this investigation is to build up a list of numbers in Base -2

$(-2)^{5}$	$(-2)^{4}$	$(-2)^{3}$	$(-2)^{2}$	(-2) ${ }^{1}$	$(-2)^{0}$	Base Ten
-32	16	-8	4	-2	1	Number
					1	1
			1	1	0	2
			1	1	1	3
			1	0	0	4
			1	0	1	5
	1	1	0	1	0	6
	1	1	0	1	1	7
	1	1	0	0	0	8
	1	1	0	0	1	9
	1	1	1	1	0	10
	1	1	1	1	1	11
	1	1	1	0	0	12
	1	1	1	0	1	13
	1	0	0	1	0	14
	1	0	0	1	1	15
	1	0	0	0	0	16
	1	0	0	0	1	17

This is sufficient to see patterns of $0^{\prime} \mathrm{s}$ and $1^{\prime} \mathrm{s}$ in the columns.
Significant numbers are $1,5,21,85 \ldots$ Why?

1433 Base 2 (cont)

- Changing from a base -2 representation to a base 10 number is not too difficult if you remember the column headings.
e.g. $1101101_{- \text {two }}$ is equivalent to $64-32-8+4+1$ and so it is $29_{\text {ten }}$
- Changing from a base 10 number to a base -2 representation is more difficult. e.g. to translate $27_{\text {ten }}$ which is in the range 22 to 85 , it is necessary to choose the power of -2 which corresponds to that range . . $(-2)^{6}$ or 64 .
Choosing smaller powers of -2 will allow you to obtain the correct combination for $27_{\text {ten }} \ldots 64-32-8+4-2+1$
Hence, $27_{\text {ten }}$ is equivalent to $1101111_{\text {-two }}$

Addition

In any addition in base -2 , you will need to recognise that the sum of 1 and 11 is zero.

and the sum is

there is a second group of zero which the first column addition produces.
As in ordinary addition of base 10 , there are several techniques which you can use.

The latter example could also be 'cancelled' in this way:

Subtraction

Since 11 is equivalent to -1 , any subtraction of the form $0-1$ will be equivalent to adding 11.

e.g.	-		1	0	0	0 1	and	1	0 1	0	0 1
	1	1	1	0	1	1			1	1	1
					1			1		1	

Multiplication

Multiplications are reasonably straightforward because using the long multiplication method, the problem is reduced to an addition.

e.g.	1	1	0	
	$\times 1$	1	0	
1	1	0	0	0
	1	1	0	0
		1	0	0

Division

This follows traditional base 10 long-division
e.g.

		1	0	1
1	0	0	1	1
-1	1	1		
		1	1	1
		-1	1	1
			0	

except that divisions like $11010 \div 110$ present a problem. Why?
You might like to think about these.

- What is the difference between base -2 numbers which have an even number of digits, and those which have an odd number of digits?
- At what stages do the number of digits increase when counting in base -2 ?

1434 Bearings and Scale Drawing

1. Your answers may vary slightly. If they are very different check with your teacher.
a) 270 km on a bearing of 140°.
b) 440 km on a bearing of 320° followed by 390 km on a bearing of 252°.
c) 60 km on a bearing of 229° followed by 505 km on a bearing of 087°.
d) 350 km on a bearing of 343° followed by 465 km on a bearing of 122°.
e) 400 km on a bearing of 037° followed by 420 km on a bearing of 207°.
f) 270 km on a bearing of 090° followed by 530 km on a bearing of 270°.
g) 270 km on a bearing of 043° followed by 390 km on a bearing of 084° followed by 410 km on a bearing of 150°.
h) 250 km on a bearing of 360° followed by 250 km on a bearing of 090° followed by 250 km on a bearing of 180°.
2. Ask someone else to check your scale drawings. They should look similar to these.
a) Rough sketch
Scale drawing
$1 \mathrm{~cm}=100 \mathrm{~km}$

continued/

1434 Bearings and Scale Drawing (cont)

2. b) Rough sketch

Scale drawing $1 \mathrm{~cm}=100 \mathrm{~km}$

1435 Back Bearings

1. 280°
2. 300°
3. 82 km on a bearing of 088°.
4.

1436 Block Problems

These questions should give you some hints:

- If you know how many cubes in one layer, how can you find the number of cubes in each block?

$$
\begin{array}{lll}
(1 \times 2 \times 3 \times 4)+1=25 & \rightarrow & 5^{2} \\
(2 \times 3 \times 4 \times 5)+1=121 & \rightarrow & 11^{2} \\
(3 \times 4 \times 5 \times 6)+1=361 & \rightarrow & 19^{2} \\
(4 \times 5 \times 6 \times 7)+1=841 & \rightarrow & 29^{2}
\end{array}
$$

- The process always gives a square number.
- The square root of the square number is always one more than the product of the first and last numbers (and one less than the product of the middle pair).
e.g. $(9 \times 10 \times 11 \times 12)+1=$

$$
\begin{array}{ll}
{[(9 \times 12)+1]^{2}} & =109^{2} \text { or } \\
{[(10 \times 11)-1]^{2}} & =109^{2}
\end{array}
$$

- This suggests the generalisation, "if you multiply any 4 consecutive numbers $\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$ and add one, the result will always be the square of $n(n+3)+1$ or $(n+1)(n+2)-1^{\prime \prime}$.

To prove the generalisation $n(n+1)(n+2)(n+3)+1=[n(n+3)+1]^{2}$ or $[(n+1)(n+2)-1]^{2}$
First look at the left hand side. $n(n+1)(n+2)(n+3)+1$
Multiplying out

$$
n(n+1)\left(n^{2}+5 n+6\right)+1
$$

$$
n\left(n^{3}+6 n^{2}+11 n+6\right)+1
$$

$$
\mathrm{n}^{4}+6 \mathrm{n}^{3}+11 \mathrm{n}^{2}+6 \mathrm{n}+1
$$

Then look at the right hand side. $[\mathrm{n}(\mathrm{n}+3)+1]^{2}$ or

$$
\left[n^{2}+3 n+1\right]^{2}
$$

$$
n^{4}+6 n^{3}+11 n^{2}+6 n+1
$$

$$
\begin{aligned}
& {[(n+1)(n+2)-1]^{2}} \\
& {\left[n^{2}+3 n+6-1\right]^{2}} \\
& n^{4}+6 n^{3}+11 n^{2}+6 n+1
\end{aligned}
$$

The three expressions are equal therefore we have proved that the left-hand side and the right hand side are equal. Our theory was correct. It will be true for any value of n.

1438 Patterns in Pascal's Triangle

1. ... 91, 364, 1001, ... 1001, 364, $91 \ldots$
2. The triangle numbers appear in a sequence along two lines.

continued/

1438 Patterns in Pascal's Triangle (cont)

3. The totals of each row give the sequence $1,2,4,8,16,32,64, \ldots$ which are the powers of 2 . The power of 2 is the same as the second number in each row.

4. In the row beginning $1,7,21,35 \ldots$ the numbers (except 1) are all multiples of 7 . In the row beginning $1,5,10 \ldots$ the numbers (except 1) are all multiples of 5. This property occurs in rows $3,5,7,9,11 \ldots$ the odd numbers.
5. $11^{2}=121$
$11^{3}=1331$
$11^{4}=14641$
The power of 11 is the same as the second number in each row. You would need to carry the tens digit over into the preceding space
i.e. The 6 th row is $1,6,15,20,15,6,1$ and $11^{6}=1771561$

$$
\begin{array}{ccccccc}
1, & 6, & 15 & 20 & 15 & 6, & 1 \\
\downarrow & \downarrow & \downarrow & \lfloor & \downarrow & \downarrow & \downarrow \\
1 & 7 & 7 & 1 & 5 & 6 & 1
\end{array}
$$

6. The previous diagram gives a useful ways of generating rows of larger numbers which would otherwise be very laborious to reach.
So the row beginning $1,100 \ldots$ will be:

$$
\left.\begin{array}{cccc}
1 & \frac{100}{1} & \frac{100 \times 99}{1 \times 2} & \frac{100 \times 99 \times 98}{1 \times 2 \times 3} \\
& \cdots \\
1, & 100, & 4950, & 161700
\end{array}\right]
$$

7. The totals of the lines which are picked out in the last diagram give the Fibonacci sequence. A ruler will help you to pick out the appropriate numbers:

8. a) $\mathrm{S}=2^{0}+2^{1}+2^{2}+2^{3}+\ldots 2^{14}$

Multiply both sides by 2 .
$2 S=2^{1}+2^{2}+2^{3}+2^{4}+\ldots 2^{15}$
Subtract the first equation from the second.

$$
\begin{aligned}
2 S-S & =\left(2^{1}+2^{2}+2^{3}+2^{4}+\ldots 2^{15}\right)-\left(2^{0}+2^{1}+2^{2}+2^{3}+\ldots 2^{14}\right) \\
S & =2^{15}-2^{0} \\
S & =2^{15}-1
\end{aligned}
$$

b) $\mathrm{S}=3^{0}+3^{1}+3^{2}+3^{3}+\ldots 3^{15}$

$$
3 S=3^{1}+3^{2}+3^{3}+3^{4}+\ldots 3^{16}
$$

$$
3 S-S=\left(3^{1}+3^{2}+3^{3}+3^{4}+\ldots 3^{16}\right)-\left(3^{0}+3^{1}+3^{2}+3^{3}+\ldots 3^{15}\right)
$$

$$
2 S=3^{16}-3^{0}
$$

$$
=\frac{3^{16}-1}{2}
$$

c) $S=4^{0}+4^{1}+4^{2}+\ldots 4^{15}$
$4 S=4^{1}+4^{2}+4^{3}+\ldots 4^{16}$
$4 S-S=4^{16}-4^{0}$
$3 S=4^{16}-1$
$S=\frac{4^{16}-1}{3}$
d) $\mathrm{S}=\frac{5^{17}-1}{4}$
2. a) The series in $1(\mathrm{~d})$ was $5^{0}+5^{1}+5^{2}+5^{3}+\ldots$

The series $2+10+50+250+\ldots$ is twice as large because it can be written as:

$$
2+2\left(5^{1}\right)+2\left(5^{2}\right)+2\left(5^{3}\right)+\ldots
$$

The sum of the series for 17 terms will be double the sum of the series in 1(d). The sum is $\frac{2\left(5^{17}-1\right)}{4}$ which is $\frac{5^{17}-1}{2}$
b) The series is 3 times the sequence in 1(a) because $3+6+12+24+48 \ldots$ can be written as $3+3\left(2^{1}\right)+3\left(2^{2}\right)+3\left(2^{3}\right)+3\left(2^{4}\right)+\ldots$
The sum of the series for 16 terms will be 3 times that of 1(a)
The sum is $3\left(2^{16}-1\right)$.
c) $2+6+18+54+162+\ldots$ can be written as $2+2\left(3^{1}\right)+2\left(3^{2}\right)+2\left(3^{3}\right)+2\left(3^{4}\right) \ldots$ The sum of the series for 20 terms is $\frac{2\left(3^{20}-1\right)}{2}$ which is $3^{20}-1$
3. In question 2(a) the series was written as $2+2\left(5^{1}\right)+2\left(5^{2}\right)+2\left(5^{3}\right)+\ldots$

Comparing this with $a+a r^{1}+a r^{2}+a r^{3}+\ldots$ you can see that $a=2$ and $r=5$.
In question 2(b) $\mathrm{a}=3$ and $\mathrm{r}=2$.
In question 2(c) $\mathrm{a}=2$ and $\mathrm{r}=3$.
4. a) The sixth term is ar ${ }^{5}$
b) The nth term is ar ${ }^{n-1}$

1439 Geometric Progressions (cont)

5. a) $2\left(4^{14}\right)$
b) The sum of the series is $\frac{2\left(4^{15}-1\right)}{3}$
6. a) $5+10+20+40+\ldots=5+5\left(2^{1}\right)+5\left(2^{2}\right)+5\left(2^{3}\right)+\ldots+5\left(2^{19}\right)$

$$
=5\left(2^{20}-1\right)
$$

b) $1+\mathrm{r}^{1}+\mathrm{r}^{2}+\mathrm{r}^{3}+\ldots+\mathrm{r}^{9} \quad=\frac{\mathrm{r}^{10}-1}{(\mathrm{r}-1)}$
c) $1+\mathrm{r}^{1}+\mathrm{r}^{2}+\mathrm{r}^{3}+\ldots+\mathrm{r}^{\mathrm{n}-1}=\frac{\mathrm{r}^{\mathrm{n}}-1}{(\mathrm{r}-1)}$
d) $a+a r^{1}+a r^{2}+a r^{3}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{(r-1)}$

1440 Locating the depot

The total distance travelled each day if the depot is built on the corner of Third Street and Third Avenue is 42 km .

Distance from Shop A $\rightarrow 4 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 8 \mathrm{~km}$
Distance from Shop B $\rightarrow 5 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 10 \mathrm{~km}$
Distance from Shop C $\rightarrow 3 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 6 \mathrm{~km}$
Distance from Shop D $\rightarrow 3 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 6 \mathrm{~km}$
Distance from Shop E $\rightarrow 6 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 12 \mathrm{~km}$
The shortest total distance travelled each day is 30 km . There are three possible sites:

- on the corner of Fifth Street and Third Avenue,

Distance from Shop A $\rightarrow 6 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 12 \mathrm{~km}$
Distance from Shop B $\rightarrow 3 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 6 \mathrm{~km}$
Distance from Shop C $\rightarrow 1 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 2 \mathrm{~km}$
Distance from Shop D $\rightarrow 1 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 2 \mathrm{~km}$
Distance from Shop E $\rightarrow 4 \mathrm{~km} \rightarrow$ Total distance $\rightarrow 8 \mathrm{~km}$, or

- on the corner of Highway One and Fourth Avenue, or
- on the corner of Highway One and Second Avenue.

Shops on the same street

For this investigation it helps to use co-ordinates to define the positions of a single point.

- Distances $\mathrm{W} \leftrightarrow \mathrm{E}$ are the x co-ordinate.
- Distances $N \leftrightarrow S$ are the y co-ordinate.

The co-ordinates of Shop A could be $(1,2)$ and Shop B could be $(5,1)$, so the best place to build the depot would be $(3,2)$.
Work systematically, next with 3 shops, then 4 shops .. .

Shops on different streets

Once again you need to work systematically so that you can see a pattern in order to answer the questions on page 3.

Where do you start?

A quick check with a sheet of card $14 \mathrm{~cm} \times 14 \mathrm{~cm}$ will give a good estimate of desirable sizes:

- Cutout a $6 \times 6 \ldots \ldots 4 \times 4 \ldots . \ldots 1 \times 1 \ldots$
square at each corner.

volume $=24 \mathrm{~cm}^{3} \quad$ volume $=144 \mathrm{~cm}^{3}$

volume $=200 \mathrm{~cm}^{3}$

volume $=144 \mathrm{~cm}^{3}$

Narrowing down the possibilities

The largest volume so far, starting with a 14 cm square is when $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ squares are cut out. It is now sensible to use the 14.6 cm square and investigate cut-outs close to $2 \mathrm{~cm} \times 2 \mathrm{~cm}$.

Volume $=224.72 \mathrm{~cm}^{3}$

Volume $=230 \mathrm{~cm}^{3}$

Volume $=226 \mathrm{~cm}^{3}$

It seems that the maximum volume will be when the sides are between 2 cm and 2.8 cm .

Using a spreadsheet

A spreadsheet can be used to generate a closer approximation to the maximum volume. Here is part of a spreadsheet.

	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{D}	\mathbf{E}
1	Size of cut- out square	Length of box (cm)	Width of box (cm)	Height of box (cm)	Volume of box $\left(\mathrm{cm}^{3}\right)$
2	2	10.6	10.6	2	224.72
3	2.1	10.4	10.4	2.1	227.136
4	2.2	10.2	10.2	2.2	228.888
5	2.3	10	10	2.3	230
6	2.4	9.8	9.8	2.4	230.496
7	2.5	9.6	9.6	2.5	230.4
8	2.6	9.4	9.4	2.6	229.736
9	2.7	9.2	9.2	2.7	228.528
10	2.8	9	9	2.8	226.8

The maximum volume will be when the sides are between 2.4 cm and 2.5 cm .

This is the next part of the spreadsheet.

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
1	Size of cut- out square	Length of box (cm)	Width of box (cm)	Height of box (cm)	Volume of box (cm $\left.{ }^{3}\right)$
2	2.4	9.8	9.8	2.4	230.496
3	2.41	9.78	9.78	2.41	230.5126
4	2.42	9.76	9.76	2.42	230.5234
5	2.43	9.74	9.74	2.43	230.5283
6	2.44	9.72	9.72	2.44	230.5273
7	2.45	9.7	9.7	2.45	230.5205
8	2.46	9.68	9.68	2.46	230.5079
9	2.47	9.66	9.66	2.47	230.4895
10	2.48	9.64	9.64	2.48	230.4654

Continuing with this process will allow you to find that a maximum volume of $230.52859 \mathrm{~cm}^{3}$ when squares of 2.4334 cm are removed from the corners of the 14.6 cm square card.

1442 Nearly but not quite

The more terms in the series $\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots$ that you take, the closer the sum gets to $\frac{1}{2}$.
$\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}} \ldots$ gets closer and closer to $\frac{1}{3}$.
$\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}} \ldots$ gets closer and closer to $\frac{1}{4}$.
The more terms you take in the series $\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}} \ldots$ the closer the sum gets to $\frac{1}{x-1}$.
1443π

- The Chinese approximation gave the lowest value for π in this list.
- The Greek approximation $\sqrt{10}$, gave the largest value of π in this list. The Greeks were unable to calculate $\sqrt{ } 10$ accurately two thousand years ago. They used Archimedes' calculation of 'between $3 \frac{1}{7}$ and $37{ }_{71}$ '.
- The value which is closest to that calculated by a computer is the first approximation, which was made by the Chinese mathematican Tsu Ch'ung-chih. He lived 430-501AD. The fraction $\underline{355}$ shows him to have been an expert 113
mathematician because this value is accurate to six decimal places - an accuracy of 1 in a million.

1444 Stars

- Make a display of your stars and write about any discoveries you have made.

1445 Flexagons

Further investigations with flexing shapes are given in

- SMILE 0145 Tetraflexagons
- Mathematical Curiosities 1 by Jenkins and Wild ISBN 0906212138
- Mathematical Curiosities 2 by Jenkins and Wild ISBN 0906212146
- Mathematical Curiosities 3 by Jenkins and Wild ISBN 0906212251

You need to be systematic with this investigation as the order in which the folds are completed gives different results.
e.g. VMVM gives a loop which has 2 complete twists.

VVMM gives a loop with no twists.

$$
\begin{array}{llllll}
\text { VVV } \rightarrow \frac{1}{2} \text { twist } & \text { VVVV } & \rightarrow 0 \text { twists VVVVV } & \rightarrow \frac{1}{2} \text { twist } \\
\text { VVM } \rightarrow \frac{1}{2} \text { twist } & \text { VVVM } & \rightarrow & 1 \text { twist } & & \\
& & \text { VVMM } & \rightarrow 0 \text { twists } & &
\end{array}
$$

Some useful questions to ask at this stage are:

- What is the difference between VVM and VVV?
- Is there any difference between VVVM and MVMM?
- Would VVVVVM give 1 twist or $\frac{1}{2}$ twist?

1447 Deltahedra

If you enjoyed making solids, you will be interested in the 5 perfect solids, sometimes called the Five Platonic Solids, which are shown on SMILE 1354 Euler Solids.

You may also be interested to use

- Make Shapes Book 1 ISBN 0906212006
- Make Shapes Book 2 ISBN 0906212014
- Make Shapes Book 3 ISBN 0906212022
which contain the nets for both simple and complicated solids.
Another further source is
- Mathematical Models by Cundy and Rollett ISBN 0906212200.

1448 Folding a Strip

After n folds, the right half of the strip has the same creases as when the strip was folded ($n-1$) times.
e.g. With four folds, the right hand side will be identical to the strip with 3 folds.

The centre crease is always a valley fold.

The left half is the opposite of the right half.

So the strip will look like this \rightarrow

1448 Folding a Strip (cont)

Drawing

In transferring your folding results to paper, remember that the right hand side of the strip is the same as the whole of the previous strip.
By using scissors and overlapping drawings, you might save yourself some work and make some discoveries.

1449 Nets

There are many possible answers, because each of these nets are just some of the arrangements which will make a cube.

For the cruciform shape the black face and flags could be arranged as follows.

Here are three possible arrangements of lines which will give the same picture as the cube on page 5.

1450 Cuboids

You should be able to find a connection between the set of 3 numbers describing the box shape and the total.
e.g. $(2,3,4) \rightarrow 24$
$(2,4,5) \rightarrow 40$
$(1,1,5) \quad \rightarrow \quad 5$

$2 \times 2 \times 2$

Wrapping

1. 24 squares
2. 28 squares
3. 34 squares

String

1. 24 edges
2. 28 edges
3. 40 edges

Larger parcels with 36 cubes	Wrapping	String
$1 \times 1 \times 36$	146	152
$1 \times 2 \times 18$	112	84
$1 \times 3 \times 12$	102	64
$1 \times 4 \times 9$	98	56
$1 \times 6 \times 6$	96	52
$2 \times 2 \times 9$	80	52
$2 \times 3 \times 6$	72	44
$3 \times 3 \times 4$	66	40

1452 Arrangements

Several arrangements are possible, but they are difficult.

1454 ISBN's and Errors

1. 0140057144 and 0298705576 are wrong.
2. a) 9
b) 6
c) 0
3. a) 10
b) X is the Roman numeral for 10 and it can be used as a single digit.
4. a) Transposition error
b) Random error
c) Transcription error
d) Double Transposition error
5.

6.

	Remainder	Will weighted modulo 11 test detect error?
Correct number 0453192132	0	-
Transcription error		Yes
Transposition error		Yes
Double transp. error		Yes
Random error		Not necessarily

7. a) Transcription, Transposition and Double Transposition
b) Random
c) Many answers e.g. two transpositions: correct number 085985051X 089585015X

1455 Pinball

1.-4. Many possible answers.
5. 65 p
6. Your answers will depend upon your results from question 1.
7. $65 p$
8. Most people perhaps thought that the amount you could win (10p and 15p) was not worth 10p a go.
9. About twice as much.

Discuss how you would set up the prizes with your teacher.

1. $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$
2. If the matrix did not give you the same co-ordinates as your drawing, check your results with your teacher.
3. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{x}{y}=\binom{-y}{x}$
4. a) $\binom{x}{y} \rightarrow\binom{-x}{-y}$
b) $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)\binom{x}{y}=\binom{-x}{-y}$
5. $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$
a) A rotation of 180°
b) Because a rotation of 90° followed by a rotation of 90° is equal to a rotation of 180°.
6. $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
7. You would get the identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
8. Your results of multiplying other pairs of matrices together should demonstrate the combined effect of rotations.

1457 Combining Rotations
$\left(\begin{array}{cc}0.94 & -0.34 \\ 0.34 & 0.94\end{array}\right)\left(\begin{array}{cc}0.34 & -0.94 \\ 0.94 & 0.34\end{array}\right)=\left(\begin{array}{ll}0 & -0.9992 \\ 0.9992 & 0\end{array}\right) \approx\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
The answer is always approximately $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$
With pairs of angles which add up to 180° the answer $=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$
With pairs of angles which add up to 270° the answer $=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
With pairs of angles which add up to 360° the answer $=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

1457 Combining Rotations (cont)

$\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ is the matrix which rotates 90°.
$\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ is the matrix which rotates 180°.
$\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ is the matrix which rotates 270°.
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad$ is the matrix which rotates 360°.

1458 Reflection Matrices Investigation

The fact that $\binom{1}{0} \rightarrow$ reflected in the line $y=2 x \rightarrow\left(\begin{array}{c}-\frac{3}{5} \\ 4 \\ 5\end{array}\right)$
and

$$
\binom{0}{1} \rightarrow \quad \text { reflected in the line } y=2 x \quad \rightarrow\binom{\frac{4}{5}}{\frac{3}{5}}
$$

suggests that this investigation has something to do with a right-angled triangle with sides 3,4 and 5.

Similarly $\quad\binom{1}{0} \rightarrow$ reflected in the line $y=\frac{1}{4} x \quad \rightarrow\binom{\frac{15}{17}}{\frac{8}{17}}$
and

$$
\binom{0}{1} \rightarrow \text { reflected in the line } y=\frac{1}{4} x \quad \rightarrow\binom{\frac{8}{17}}{-\frac{1}{17}}
$$

suggests something to do with a right-angled triangle with sides 8,15 and 17 .
To continue this investigation, it is necessary to move away from scale drawings, because of the lack of accuracy, and on to trigonometry.

Look at the angle made by the line $y=m x$ and the unit vector $\binom{0}{1}$

It will help you to find a general matrix that will reflect any point in any line of the form $y=m x$.

1459 Matrices for Shears Investigation

Any matrix of the form $\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right)$
produces shears where the points of the shape are shifted parallel to the x axis by m times the y co-ordinate.

$$
\left(\begin{array}{ll}
1 & m \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x+m y}{y}
$$

Any matrix of the form $\left(\begin{array}{ll}1 & 0 \\ \mathrm{n} & 1\end{array}\right)$
produces shears where the points of the shape are shifted parallel to the y axis by n times the x co-ordinate.

$$
\left(\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right)\binom{x}{y}=\binom{x}{n x+y}
$$

For investigating shears of other invariant lines it is best to look at $y=x$ first, before moving on to lines of the form $y=m x$.

1460 Diophantine Problems

A. Original price is 20 p. The man sold 14 pens.
B. a) 38
b) 42
c) 40
C. 6 km per hour
D. They are either all good hens or all bad hen, but they lay 9 eggs each in either case.

1461 Figures for Words

2. 562
3. 0 , because you end with 0 .
4. a) 261
b) 999
c) 803
d) 4056
e) 7001
f) 6090
g) 5707
h) 10010

1462 Missing Keys

There are many possible answers. Here are some examples:

1. $7-(3)-(3)$
2. (3) $x \rightarrow(-) \rightarrow$
3. $3 \rightarrow(3)-3 \rightarrow$
4. $7-(-5$
5. (7) (- $\rightarrow(3) \quad \begin{aligned} & \text { If you have a scientific calculator this } \\ & \text { will not give you } 5 .\end{aligned}$
6. (3) $x \rightarrow-(3)$
7. $7=$
8. 3 ($x \rightarrow-7 \rightarrow(-3 \rightarrow-(-7)$
9. $3 \times(3)$

1463 Use Brackets

If you are unsure whether your questions are correct, show them to your teacher.

1464 Zero's the Limit

Pressing the number 5 allows the next player to use all the numbers.
Pressing the number 9 allows the next player to use large numbers 8 and 6 .

1465 Smallest on the Left

Smallest on the left, the fractions are:

$$
\frac{19}{58} \quad \mathrm{C}, \frac{7243}{21586}, \mathrm{~A}, \frac{12}{35}, \mathrm{D}, \frac{8}{23}, \quad \mathrm{~B}, \frac{214}{607}
$$

where A, B, C and D are the missing ones that you chose.

1466 Patterns of Nines

This table should be enough to indicate the patterns:

$1 \times 9=09$	$1 \times 99=099$	$1 \times 999=0999$	$1 \times 9999=09999$	$1 \times 99999=099999$	
$2 \times 9=18$	$2 \times 99=198$	$2 \times 999=1998$	$2 \times 9999=19998$	$2 \times 99999=199998$	
$3 \times 9=27$	$3 \times 99=297$	$3 \times 999=2997$	$3 \times 9999=29997$	\cdot	299997
$4 \times 9=36$	\cdot	396	\cdot	3996	\cdot
$5 \times 9=45$	\cdot	495	\cdot	4995	\cdot
$6 \times 9=54$	\cdot	594	\cdot	5994	
$7 \times 9=63$					
$8 \times 9=72$					
$9 \times 9=81$	$9 \times 99=891$	$9 \times 999=8991$	$9 \times 9999=89991$	$9 \times 9999=899991$	

1467 Patterns of Numbers

$$
\begin{aligned}
(1 \times 8)+1 & =9 \\
(12 \times 8)+2 & =98 \\
(123 \times 8)+3 & =987
\end{aligned}
$$

The explanation comes from the multiples of 8:
$16,24,32, \ldots$ where the 'tens' digit increases by 1 each time, and the 'units' digit decreases by 2 each time.

This is equivalent to $10 \times x^{2}$ in each row.

The explanation comes from the multiples of 9 :
$18,27,36, \ldots$ where the sum of the 'units' digits and the following 'tens' digit is always $10 \ldots$
\ldots and, this time where the multiples of 9 are in descending order, the same sum is always 8 .

1468 Remainders

$$
17 \div 7=2.4285714
$$

There are two different methods you could use.

Method 1

Multiply the whole number part of the answer (2)
by the number you divided by (7).
$2 \times 7=14$
Subtract the answer (14) from the number you divided into (17).
The remainder is 3 .

Method 2

Take the decimal part (0.4285714) and multiply by the number you divided by (7).
The remainder is 3 .
$0.4285714 \times 7=3$
On some calculators the answer is displayed as 2.9999998 . Why is this?

1469 Make a Thousand

The third pattern is
nearest to 1000 . It is
The third pattern is
nearest to 1000 . It is too large by 56.

174 is fifty-six less than
230 so will give 1000 exactly.

$17-14=3$

Remember that the inverse of division is multiplication.

There are several other patterns which give 1000 exactly. How many did you find? Show your 3×3 square to your teacher.

1470 Make One

Did you play the game using numbers less than 1, negative numbers, . . . ?

1471 Sixes

- This shows the numbers for all the squares by rolling the dice, starting from the middle square. It is possible to get two numbers in each of the corner squares. Can you see why?

3	3	$5 / 3$
2	6	5
$4 / 2$	4	5

- It is possible to get a 6 in every square:

6 moves to get 6 in a corner.

There are 6 different arrangements following the rules on page 1.

$(1,2,3)$

$(1,3,2)$

$(2,1,3)$

$(2,3,1)$

$(3,2,1)$

$(3,1,2)$

By using the same recording system for a 4 by 4 square tile.

This is tile (1, 2, 3, 4).

1473 Slides to Order

It is always possible to end up with the original order ($1,2,3,4,5,6,7,8$).
Show your own puzzle to your teacher.

1474 Different Orders

With three things, it is possible to make 6 different orders.

GUARANTEED USED CARS	1	2	3	A	B	C
GUARANTEED CARS USED	1	3	2	A	C	B
USED CARS GUARANTEED	2	1	3	B	A	C
USED GUARANTEED CARS	2	3	1	B	C	A
CARS GUARANTEED USED	3	1	2	C	A	B
CARS USED GUARANTEED	3	2	1	C	B	A

1. Show your slogan to your teacher. It is possible to make 24 different orders. Did all your 24 different orders make sense?

number of things	1	2	3	4	5	6	.	.	.
number of orders	1	2	6	24	120	720	.	.	.

- You may like to make a folder or wall-display to show your results for some of the suggestions on pages 4-7.

1475 Permutations

Here is one way of describing the permutations of four things. It is important to work methodically

- There are six permutations, with the first digit $\begin{array}{lllllll}1 & 2 & 3 & 4\end{array}$ '1' kept stationary.

1	2	4	3
1	3	2	4
1	3	4	2
1	4	2	3
1	4	3	2

- There will be a further six different permutations with '2' kept stationary.
$\begin{array}{llll}2 & 1 & 3 & 4\end{array}$
$\begin{array}{llll}2 & 1 & 4 & 3\end{array}$ $2314 \ldots$
- There will be a further six different permutations with '3' kept stationary.
$\begin{array}{llll}3 & 1 & 2 & 4\end{array}$
$3142 \ldots$
- There will be a further six different permutations with '4' kept stationary.
$4 \quad 1 \quad 2 \quad 3$
4 1 3 2...
There is a total of 24 permutations of four things.

1476 Doodles

Make a display of your doodle. Were you able to shade it with just one colour?

1477 Sprouts

What strategy did you use to win. Did it matter who went first?

1478 Zig-Zag

What strategy did you use to win. Did it matter who went first?

1479 Aggression

What strategy did you use to win. Did it matter who went first?

1481 String Knots

There have been many interesting investigations into String Knots. You can read about some of them in "Knots representing numbers", pages 42-45 of the Open University booklet Decimal Number Words; Tallies and Knots (ISBN 033505017 4)

1482 Tricky Sum

How did Gauss solve the problem so quickly?
The method he used can be explained by considering

$$
1+2+3+4+5+\ldots+99+100
$$

- The first and last terms add up to 101.
- The second and last-but-one also add up to 101.
- So do the third and last-but-two . . .
$1+100$
$2+99$
$3+98$
$4+97$
- There are 50 pairs which add up to 101 , the last pair being $50+51$.

The sum of all the numbers from 1 to 100 is 50 times 101 ; in other words 5050.
For the sum $\quad 1+2+3+4+\ldots+999+1000$

- How many pairs are there which add up to 1001 ?

Gauss' method can be adapted for any regular series of numbers like $3+5+7+9+\ldots+21+23+25$

- By pairing numbers which add to 28 it is possible to find the sum very quickly:
$3+25$
$5+23$
$7+21$ There are 6 pairs, so the sum is 6×28; in other words 168 .
$13+15$
The method is a powerful tool, even for an odd number of terms.
What would you do in this case?

1483 Largest Product

Many products are possible
e.g. $1 \times 2 \times 3 \times 4=24$
$21 \times 34=714$
$2 \times 134=268$
$1 \times 234=234$
$24 \times 13=312$
$21 \times 43=903$

The largest product using $1,2,3$, and 4 is $41 \times 32=1312$

- It is difficult to find the largest product using $1,2,3, \ldots 9$ because the answer will not fit on to most calculators.

You could try finding the largest product using: $1,2, \ldots 5$
$1,2, \ldots 6$
$1,2, \ldots 7$
until you can see a pattern.

1484 Decimal Patterns

1. $0.2,0.4,0.6,0.8,1.0,1.2 \ldots \quad$ add 0.2 each time
2. $0.1 \dot{1}, 0.2 \dot{2}, 0.3 \dot{3}, 0.4 \dot{4}, 0.5 \dot{5}, 0.6 \dot{6} \ldots \quad$ add $0.1 \dot{1}$ each time
3. $0.5,0.5,0.5 \ldots$
all equal $\frac{1}{2}$
4. $0.3 \dot{3}, 0.6 \dot{6}, 1.0,1.3 \dot{3}, 1.6 \dot{6}, 2.0 \ldots \quad$ or $\begin{aligned} & \text { increase by } 0.3 \dot{3} \\ & \text { add on } \frac{1}{3} .\end{aligned}$
5. $0.1,0.01,0.001,0.0001 \ldots$
divide by 10 each time
or the 1 moves to the right each time
6. $0.1,0.2,0.3,0.4,0.5 \ldots$
add 0.1 each time
7. $0.1,0.1,0.1 .$.
all equal $\frac{1}{10}$
8. $0, \dot{0} \dot{9}, 0 . \dot{1} \dot{8}, 0 . \dot{2} \dot{7}, 0 . \dot{3} \dot{6}, 0 . \dot{4} \dot{5}, 0.5 \dot{4} \ldots$
each pair of repeated numbers adds to 9 or add on $0.0 \dot{9}$.
9. $0.33 \dot{3}, 0.33 \dot{3}, 0.33 \dot{3} \ldots$
10. $0.5,0.05,0.005,0.0005 \ldots$
all equal ${ }^{\frac{1}{3}}$
5 moves to the right each time or divide by 10 each time
11. $0.2,0.2,0.2, \ldots$
all equal $\frac{1}{5}$
12. Many possible answers.

1485 Limits

1. a) $U_{1}=\frac{1}{2}$
b) $\quad U_{4}=\frac{1}{16}$
c) $\frac{1}{2^{1}}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \frac{1}{2^{4}}, \cdots \frac{1}{2^{n}}$
d) Each term is half the previous one.
2. a) A spreadsheet will generate the sequence using this formula,

and filling the formula down the column.

	\mathbf{A}
$\mathbf{1}$	1
2	2.82842712
3	1.68179283
4	2.18101547
5	1.91520656
6	2.0437943
7	1.97845603
8	2.0108598
9	1.99459211
10	2.00270944
11	1.99864666
12	2.00067702
13	1.99966158
14	2.00016923
15	1.99991539
16	2.00004231
17	1.99997885
18	2.00001058
19	1.99999471
20	2.00000264

$\mathrm{U}_{19}=1.99999471$
$\mathrm{U}_{20}=2.00000264$
The limit is 2.
b) By changing the formula in the spreadsheet to;

	A
$\mathbf{1}$	1
2	$=\operatorname{SQRT}(27 / \mathrm{A} 1)$

The limit is 3 .
c) By changing the formula in the spreadsheet to;

	A
1	1
2	$=$ SQRT (125/A1)

The limit is 5 .
d) The limit is the cube root of the number above U_{n}.
e) 2.1544345

1485 Limits (cont)

3. a) By changing the formula in the spreadsheet to;

	A
1	1
2	$=\operatorname{SQRT}(\mathrm{A} 1+2)$

$\mathrm{U} 13=\rightarrow$	13	1.99999993
$\mathrm{U} 14=\rightarrow$	14	1.99999998
The limit is 2.	15	2

b) The limit is the number added to U_{n}.
4. $\sqrt{ } 5=2.2360679$.

1486 Threes and Sevens

In any investigation it is most important that you work in a systematic way so that you can see all your results clearly.
Can you see that all possible lengths that can be made from 3-rods and 7-rods would come somewhere in this table?

0	3	6	9	12	15	18	21	$24 \ldots$
7	10	13	16	19	22	25	28	31

The largest impossible length is 11 because all numbers above 11 appear in the table. (In fact all the numbers above 11 appear in the top 3 rows and so the rest of the table is not needed).

Using 3 -rods and 7-rods, the impossible lengths are 1,2,4,5,8 and 11.
You may have collected results for several pairs of rods and so a table will be useful:

	Number of Impossible Lengths					
	1	2	3	4	5	$6 \ldots$
		∞	3			
			4			
6						
7			6			

The table shows the results for 3 -rods and 7 -rods. It also shows that with 4 -rods and 3 -rods there are 3 impossible lengths and with 5 -rods and 3 -rods there are 4 impossible lengths. When more of the table is filled in you might see some patterns of number.

- $\quad \infty$ is a symbol for infinity. Can you see why it has been used for 4 -rods and 2-rods?

1487 Thinking in Three Dimensions

- $\quad \mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{U} \rightarrow \mathrm{V}=13 \mathrm{~cm}$
- $\quad \mathrm{PR}^{2}=\mathrm{RQ}^{2}+\mathrm{PQ}^{2}$
$P R=\sqrt{ }(9+36)=6.708 \mathrm{~cm}(3 \mathrm{dp})$
- $\quad \mathrm{P} \rightarrow \mathrm{R} \rightarrow \mathrm{V}=10.708 \mathrm{~cm}$
- $\quad \mathrm{PV}^{2}=\mathrm{VR}^{2}+\mathrm{PR}^{2}$
$P V=\sqrt{ }(16+6.45)=7.810 \mathrm{~cm}(3 \mathrm{dp})$

1. a) (i) $\mathrm{AC}=\sqrt{ }\left(12^{2}+8^{2}\right)=14.422 \mathrm{~cm}$ (3dp)
(ii) $\mathrm{BG}=\sqrt{ }\left(12^{2}+5^{2}\right)=13 \mathrm{~cm}$
(iii) $\mathrm{BE}=\sqrt{ }\left(8^{2}+5^{2}\right)=9.434 \mathrm{~cm}$ (3dp)
b) $\mathrm{BH}=\sqrt{ }\left(12^{2}+8^{2}+5^{2}\right)=15.264 \mathrm{~cm}(3 \mathrm{dp})$
2. The longest distance that could be fitted into the garage is $\sqrt{ }\left(5^{2}+3^{2}+3^{2}\right)=6.557 \mathrm{~m}$. A 7m pole will not fit in.
3. a) Route
$S \rightarrow E \rightarrow F$
$S \rightarrow R \rightarrow F$
$\mathrm{S} \rightarrow \mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{F}$
$S \rightarrow R \rightarrow Q \rightarrow F$
$\mathrm{S} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{F}$
$\mathrm{S} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{F} \quad 28.649 \mathrm{~cm}$
$\mathrm{S} \rightarrow \mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{R} \rightarrow \mathrm{F}$
44.649 cm
$\mathrm{S} \rightarrow \mathrm{R} \rightarrow \mathrm{Q} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{F}$
40 cm
$S \rightarrow E \rightarrow P \rightarrow Q \rightarrow R \rightarrow F$
49.298 cm
b) $\quad \mathrm{SF}^{2}=\mathrm{SE}^{2}+\mathrm{EF}^{2}$
$\mathrm{SF}=\sqrt{ }\left(12^{2}+4^{2}+8^{2}\right)=14.967 \mathrm{~cm}(3 \mathrm{dp})$
4. The length of the label is $\pi \times 8 \mathrm{~cm}=25.133 \mathrm{~cm}$ (3 dp) The length of the line is $25.132^{2}+12^{2}=27.851 \mathrm{~cm}$ (3 dp)
5. a) $\sqrt{ }\left(5^{2}+5^{2}+5^{2}\right)=8.660 \mathrm{~cm}$ (3dp)
b) $\frac{8.660}{2}=4.330 \mathrm{~cm}$ (3dp)

1488 Angles between planes

1. a) BC
b) BC
c) BD
d) EH
2. a) 90°
b) 45°
c) 90°
d) 90°
3. a) True
b) False
c) True
d) False
4. a) $\angle \mathrm{GBC}$ or $\angle \mathrm{HAD}$
b) $\angle \mathrm{CGB}$ or $\angle \mathrm{DHA}$
c) $\angle \mathrm{BDA}$ or $\angle \mathrm{FHE}$
d) $\angle \mathrm{AFE}$ or $\angle \mathrm{DGH}$
e) $\angle \mathrm{AFB}$ or $\angle \mathrm{DGC}$
5. a) $\angle \mathrm{GBC}$

b) $\angle \mathrm{FDB}$

c) $\angle \mathrm{FGB}$

e) $\angle \mathrm{HBE}$

1488 Angles between planes (cont)

6. a) 7.07 cm
b) 8.66 cm
c) 35.3°
d) 3.54 cm
e) 45°
7. a) ON
b) 90°
c) $\angle \mathrm{OMN}$
8. a) 7.07 cm
b) 3.54 cm
c) 7.18 cm
d) 63.8°
e) 7.59 cm
f) 70.9°

1500 Subject of a Formula

- When $\mathrm{a}=4, \mathrm{~b}=6$ and $\mathrm{h}=7, \quad \mathrm{~A}=\frac{1}{2}(\mathrm{a}+\mathrm{b}) \mathrm{h}$

$$
A=\frac{1}{2}(4+6) 7=35
$$

- Substituting $a=4, h=7$ and $A=35$ into the formula where b is the subject should give $b=6$. Did you find that $a=4$ when you used the rearrangement with a as the subject and that $h=7$ when you used the rearrangement with h as the subject?
- For $T=2 \pi \sqrt{ }\left(\frac{L}{8}\right)$, whatever values you substituted, the rearrangements should agree.

1. $\mathrm{b}=\frac{\mathrm{A}}{3}$
2. $\quad \mathrm{l}=\frac{\mathrm{v}}{\mathrm{k}}$
3. $t=\frac{v-u}{a}$
4. $\mathrm{x}=2 \mathrm{~m}-\mathrm{y}$
5. $\quad v=\sqrt{\frac{\mathrm{Fr}}{\mathrm{m}}}$
6. $\mathrm{p}=\frac{\mathrm{A}}{3}-5$ or $\mathrm{p}=\frac{\mathrm{A}-15}{3}$
7. $\mathrm{s}=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 \mathrm{a}}$
8. $u=\sqrt{ }\left(v^{2}-2 a s\right)$
9. $\mathrm{r}=\frac{12}{6-\mathrm{a}}$
when $T=3, c=16$
when $T=2.4, c=25$
10. $L=\frac{P}{2}-W$ length is 10.7 cm
11. $h=\frac{S-2 \pi r^{2}}{2 \pi r} \quad$ height $=4.68 \mathrm{~cm}$ (to 3 sig. fig.)
12. $\mathrm{p}=\frac{\mathrm{Z}}{3+\mathrm{q}}$
13. $a=\frac{s}{2(c+2 b)}$
14. $\mathrm{h}=\frac{\mathrm{d}^{2}}{1+3 \mathrm{R}}$
15. $x=\frac{5}{y-1}$
16. $m=\frac{2 p}{v^{2} u^{2}}$
17. $\mathrm{p}=\frac{100 \mathrm{~A}}{100+\mathrm{rt}}$
18. $\mathrm{x}=\frac{2 \mathrm{Z}}{1-\mathrm{Z}}$
19. $s=\frac{2 R-5}{R-1}$
20. $\mathrm{f}=\frac{\mathrm{uv}}{\mathrm{u}+\mathrm{v}}$
21. $t=\frac{2 W-3}{3 W-2}$

1504 Areas under Graphs

1. a) 15 litres
b) 90 dozen eggs
c) $(10 \times 10)+1 / 2(5 \times 10)=125 \mathrm{~m}$
d) $40 \mathrm{~cm}^{3}$ of gas
e) 48 passengers
f) A force of 56 N
g) $11 p$
h) Base of cross-section is 350 cm
2. a) Shaded square represents 20000 litres.

Area under graph is approximately 15 squares.
Volume of water used is 300000 litres approx.
b) The area under the graph between 3 pm and 6 pm is larger than the area under the graph between 6am and 9am, so more water is used between 3 pm and 6 pm .
c) Water entering the reservoir in the period under consideration is 336000 litres. This exceeds the volume used. Therefore the water level will be higher at 6 pm .
3. a) 10 pulses
b) Area under the graph between 0 and 3.5 minutes approximates to a rectangle and a triangle.
Area $=\left(3^{1} / 2 \times 70\right)+1 / 2\left(3^{1} / 2 \times 20\right)=245+35=280$ pulses in 3.5 minutes.
Average pulse rate for first 3.5 minutes $=\underline{280}=80$ pulses per minute.

$$
\overline{3.5}
$$

c) The normal resting pulse rate was 70 .

Area under the graph between 0 and 10 minutes approximates to a rectangle and two triangles.
Area $\approx(10 \times 70)+1 / 2\left(3^{1} / 2 \times 20\right)+1 / 2\left(3^{1} / 2 \times 25\right)=700+35+43.75=778.75$
Average pulse rate for 10 minutes $=\underline{778.75}=78$ pulses per minute.

1511 Defining Regions

1. i) $\quad x>2 \quad$ matches graph d)

ii)	$y \leq 6$	matches graph c)
iii)	$x+y \geq 3$	matches graph g)
iv)	$2 x+3 y \leq 12$	matches graph b)
v)	$y+2 x \leq 50$	matches graph e)
vi)	$x y \leq 144$	matches graph a)
vii)	$y \leq 2 x$	matches graph h$)$
viii)	$x \leq 2 y$	matches graph f)

2. None of the graphs show all the inequalities.

Graph a) is defined by the inequalities

$$
\begin{aligned}
& y \geq 0 \\
& 2 x+y>4 \\
& x+3 y>9 \\
& x+y<6
\end{aligned}
$$

Graph b) is defined by the inequalities
$x \geq 0$
$y \geq 0$
$2 x+y<4$
$x+3 y<9$
not $2 x+y>4$
not $x+3 y>9$
but not $x+y<6$
Graph c) is defined by the inequalities

$$
\begin{aligned}
& x \geq 0 \\
& x+3 y<9 \\
& x+y>6
\end{aligned}
$$

$$
x \geq 0
$$

$2 x+y>4$
$x+3 y<9 \quad$ not $x+3 y>9$
but not by $y \geq 0$
not $x+3 y>9$
not $x+y<6$
nor $2 x+y>4$
but not by $y \geq 0$

Graph e) is defined by the inequalities
$x \geq 0$
$y \geq 0$
$x+3 y>9$
$x+y>6$
not $x+y<6$
but not $2 x+y>4$

1517 Trig Problems

1. Cosine rule $\quad b^{2}=75^{2}+161^{2}-2(75)(161) \cos 100$
$b=189 \mathrm{~m}$ to the nearest metre.
2. Sine rule. $\frac{\sin 70}{285}=\frac{\sin 80}{x}$
$x=299 \mathrm{~m}$ to the nearest metre.

1517 Trig Problems (cont)

3. Sine rule

$$
\begin{aligned}
& \frac{\sin 125}{250}=\frac{\sin 32.5}{b} \\
& b=164 \mathrm{~m} \text { to the nearest metre. }
\end{aligned}
$$

4. Cosine rule
$x^{2}=70^{2}+83.4^{2}-2(70)(83.4) \cos 42$
$x=56.4 \mathrm{~m}$ to 3 sig. figs.
5. Sine rule

$$
\begin{aligned}
& \frac{\sin 35}{1500}=\frac{\sin X}{2000} \\
& \sin ^{-1}(0.765)=50^{\circ} \text { to the nearest degree, } \\
& \text { but } X \text { is obtuse so } X=180-50=130^{\circ} .
\end{aligned}
$$

The bearing of C from B is $360-130=230^{\circ}$
6. $\tan 16=\frac{h}{\mathrm{AC}+30}$
$h=17 \mathrm{~m}$ and $\mathrm{AC}=30 \mathrm{~m}$

1520 Difference Game

Who won?
Did you get better at working out the biggest differences you could make with your cards? What was the biggest difference you could make?

1521 Five Card Ent

Who won?
How many times did you have to deal the cards? Did you get better the more you played?

1522 Eight Cubes

To make a yellow cube you must have no blue faces showing, even underneath!

1523 A Red Cube

You will need to know that
. . . a corner has 3 red faces. . .

.. . a side piece has 2 red faces.

\ldots. and a middle piece has 1 red face

Which piece has no red faces?

15244 Cube Solids

There are 8 different solids which cannot be turned around to look like one another.

1525 Economical Weaving

To develop the most economical colouring, you will need to imagine the same colours continuing under a cross-over.
For example:

You will also notice that the pattern repeats, like wallpaper. So make sure you use the same colours in corresponding positions.

Some people have managed to colour the pattern using only four colours.

1528 Fraction Wall 2

1. $\frac{4}{8}$
2. $\underline{\underline{2}}$
3. $\frac{6}{8}$
4. $\mathbf{5}$
8
5. $\mathbf{3}$
6. 5
7. $\mathbf{7}$
8. $\mathbf{7}$
9. $\frac{7}{8}$
10. 7
11. $\mathbf{7}$
8
8
12. $\mathbf{5}$
13. 5
8
8
14. $\frac{4}{8}=\frac{1}{2}$
15. $\mathbf{3}$
8

1533 Proportion

(i) notation		(ii) formula	(iii) graph
a)	$\mathrm{d} \propto \mathrm{t}$	$\mathrm{d}=\mathrm{kt}$	${ }^{\mathrm{d}}$
b)	$c \propto r$	$\mathrm{c}=\mathrm{kr}$	${ }^{c}$
c)	$e \propto v^{2}$	$\mathrm{e}=\mathrm{kv}^{2}$	
d)	$\mathrm{v} \propto \mathrm{r}^{3}$	$\mathrm{v}=\mathrm{kr}^{3}$	${ }^{\mathrm{V}} \mathrm{L}$
e)	$\mathrm{d} \propto \sqrt{ } \mathrm{n}$	$\mathrm{d}=\mathrm{k} \sqrt{ } \mathrm{n}$	

1533 Proportion (cont)

2. $y \propto x \quad y=k x$

$$
12=2 k \Rightarrow k=6, y=6 x
$$

when $x=5, y=30$

3. $y \propto \frac{1}{x^{2}} \quad y=\frac{\mathrm{k}}{x^{2}}$

$$
3=\frac{k}{16} \Rightarrow \mathrm{k}=48, y=\frac{48}{x^{2}}
$$

when $x=8, y=48 / 64=3 / 4$

4. $0.1=8 a \Rightarrow a=1 / 80$

x	2	6	8	10
y	0.1	2.7	6.4	12.5

5. a) and c)
6. b) and d)
7.

x	20	17	14	10	8
y	173.4	240	353.9	693.6	1084

8. $y=1^{3} / 4 x$

1537 Simultaneous equations and inequalities

A solid line indicates that the boundary is included in the required region and a dotted line that it is excluded.

One point in the unshaded region is $(3,-5)$.

Substituting into \quad| $2 x+y$ | <12 |
| ---: | :--- |
| $6+-5$ | <12 |
| 1 | <12 |

The coordinates satisfy the inequality.

1. a) $x=-3, y=2$
2. a) $x=1 / 2, y=3$

3 a)

Substituting into $x-y>3$

$$
\begin{aligned}
3--5 & >3 \\
8 & >3
\end{aligned}
$$

The coordinates satisfy the inequality.
b)

b) $x=1, y=-2$
b)

d)

1538 Solving Simultaneous Equations

Whichever method you used to solve the simultaneous equations you should have found these unique solutions. Which of the methods did you find the most useful?

1. $x=6$
$y=2$
2. $x=4$
$y=2$
3. $x=-1$
$y=3$
4. $x=-1 / 2$
$y=2$
5. $x=2^{1 / 2}$
$y=7^{1 / 2}$
6. $x=4 / 11$
$y=1 / 11$

1540 Is There a Solution?

a) There is an infinite number of solutions, the equations are represented by the same line.
b) There is no solution, the equations are represented by parallel lines which do not intersect.
c) There is a unique solution, the equations are represented by lines which intersect at the point $(1 / 2,1 / 2)$.
d) There is an infinite number of solutions, the equations are represented by the same line

1541 Cones

All final answers are given correct to 3 significant figures although calculator accuracy has been used throughout the calculation using the π button. If you have used an approximation for π such as 3.14 , your answers will vary slightly.

1. $(\pi \times 6 \times 11) \mathrm{cm}^{2}=207.3451151 \mathrm{~cm}^{2}=207 \mathrm{~cm}^{2}$
2. Volume $V=36=1 / 3 \pi(2.5)^{2} \mathrm{~h}$

Height $\quad h=\frac{3 \times 36}{2.5^{2} \times \pi}=5.500394833=5.50 \mathrm{~cm}$
Slant height, by Pythagoras, $\quad l=\sqrt{ }\left(5.5^{2}+2.5^{2}\right) \mathrm{cm}=6.041522987=6.04 \mathrm{~cm}$
Curved surface area $\quad=(\pi \times 2.5 \times 6.04) \mathrm{cm}^{2}=47.45001058=47.5 \mathrm{~cm}^{2}$
3. Total surface area $=(\pi \times 4 \times 7.5)+\left(\pi \times 4^{2}\right)=144.5132621=145 \mathrm{~cm}^{2}$
4. a) $1 / 3 \pi r^{2} \times 12=400$

$$
\pi r^{2}=100
$$

$$
\text { Base area }=100 \mathrm{~cm}^{2}
$$

1541 Cones (cont)

4. b) $r^{2}=\frac{100}{\pi}$
$\mathrm{r}=5.641895835 \quad$ Base radius $=5.64 \mathrm{~cm}$
c) Slant height $\quad=\sqrt{ }\left(5.64^{2}+144\right) \mathrm{cm}=13.26012778=13.3 \mathrm{~cm}$

Total surface area $=(\pi \times 5.64 \times 13.3)+\left(\pi \times 5.64^{2}\right)$
$=335.0296454=335 \mathrm{~cm}^{2}$
5. $\mathrm{A}=\pi \mathrm{r}^{2}+\pi \mathrm{rl}$
$\mathrm{A}-\pi \mathrm{r}^{2}=\pi \mathrm{rl}$
$\frac{\mathrm{A}-\pi \mathrm{r}^{2}}{\pi \mathrm{r}}=l$
6. Think of this as 'the curved surface area of a cone of height $(16+x) \mathrm{cm}^{\prime}$ subtract 'the curved surface area of a cone of height $x \mathrm{~cm}$ '.
The cones are similar so

$$
\begin{aligned}
\frac{x}{8} & =\frac{16+x}{14} \\
x & =21.3 \mathrm{~cm} \\
l & =\sqrt{ }\left(21.3^{2}+8^{2}\right)=22.78400999=22.8 \mathrm{~cm} \\
\frac{y}{14} & =\frac{22.8}{8} \\
y & =39.87201748=39.9 \mathrm{~cm}
\end{aligned}
$$

Surface area of lampshade $=(\pi \times 14 \times 39.9)-(\pi \times 8 \times 22.8)$

$$
=1181.038293=1180 \mathrm{~cm}^{2}
$$

1543 Composite Functions

1. (i) $x \rightarrow 3 x+2$
(ii) $x \rightarrow x / 3+2$
(iii) $\quad x \rightarrow 3(x+2)$
(iv) $x \rightarrow \frac{x+2}{3}$
(v) $\quad x \rightarrow x^{2}-7$
(vi) $\quad x \rightarrow(x-7)^{2}$
2. No.
$x \quad \rightarrow \quad 3 x^{2} \quad$ is \quad 'square and multiply by 3 ' function.
$x \quad \rightarrow \quad(3 x)^{2}$ is 'multiply by three and square' function.
3.

4.

$\operatorname{fg}(x)=8 x-3$
$g f(x)=8 x+1$
5.
(i) 7
(ii) 7
(iii) -5
(iv) -5
(v) -2
(vi) -2
$\mathrm{fg}(x)=6 x-5$
$\operatorname{gf}(x)=6 x-5$
so $\operatorname{fg}(x)=\operatorname{gf}(x)$ for all x.
6. $\operatorname{fg}(x)=\frac{1}{x+2}$
$\mathrm{gf}(x)=\frac{1}{x}+2$
7. $\mathrm{g}(x)=x-1$
8. $\mathrm{g}(x)=\frac{x-1}{2}$

1544 Joins

The shortest line to join the two grey dots is 6 units.
This diagram will help you to explain why.

There are more than twelve routes with length 6 . To find them all you will need to be systemmatic. For example,

... and you will have to decide whether you will count this last example as different from the first example above.

1544 Joins (cont)

You may like to investigate how many lines can be drawn with a different length.
Can you find a route between the two grey dots whose length is an odd number of units?

1545 Completing the Square

Because the points are arranged in a square lattice you should always be able to 'complete the square' if your first 2 points join to make one side.

If your first 2 points are to form opposite corners of a square there needs to be an even number of "hops" between them (see p4).

1546 Hops

The dots which are 3 hops from the cross are indicated with 0

The dots which are 4 hops from
the cross are indicated with

When you investigate hopping distances, your dots will always lie on a line between the two crosses. This line is the perpendicular bisector of the line joining the two points.

1547 Link Patterns

This 16-dot square has only 4 links.

It is possible to make link patterns with 7, 8,9 and 10 links on a 5 by 5 grid.

Does the pattern continue for 6 by 6 ?

1548 Link Pattern Tiles

You will be able to make an attractive poster with your results for this investigation.
The SMILE pack 1617 will give you some further ideas or you may like to use MicroSMILE program "TILES".

1549 Lines of Sight

This shows $1 / 8$ of the 11 by 11 square array.

```
- • \(x\) • • • \(x\)
``` - \(\cdot x \cdot x\) • \(\times\). -•×•×••• -••••••••

Why do you need only examine the posts in \(1 / 8\) of an array?
You may find that labelling the posts by their co-ordinates (with reference to the eye) will help you decide which posts are always hidden and which are in sight.

\section*{1550 Turning and Shifting}

There are many patterns possible on the different size pin-boards. Did you find different starting figures which produced similar patterns? . . . the same patterns?

You may like to make a poster to display you results. Write about any observations that you have made.

\section*{1551 Changing Shapes}

It would be a good idea for you to write your observations about the changing shapes. Perhaps you could make a poster of your shapes and observations.

1552 How many Tiles?

4 times

8 times

4 times

What difference does it make if the triangle is turned over as well as rotated?

\section*{1553 Halves and Quarters}

Make a display of your designs.

\section*{1554 Same Shape}

Three rectangles will fit so that the ratio of the sides is \(1: 2\).

Three similar isosceles triangles with their base and height equal can be found.

Three similar trapezia with ratio of \(\mathrm{a}: \mathrm{b}: \mathrm{h}=2: 4: 1\) can be found.

\section*{1555 Mystic Rose}

To find the number of lines in the pattern it is best to start with a simple pattern.
- A 4-point circle

Each point has 3 lines coming to it, but there are not 12 lines. There are only 6 lines because each line goes to 2 points.

Another way of explaining this is to draw the lines from one point first.
You would draw 3. Then from the second point you would draw 2 more. From the third point you would only draw another 1 . The fourth point would then be already drawn. So the number of lines is \(3+2+1\).
- A 5-point circle

Each point has 4 lines coming to it. \(5 \times 4=20\) ends.
Each line has 2 ends so there are 10 lines.

By the other method you would draw 4 from the first point, 3 from the second point, and so on.
- So, for the 16-point circle on the card, you can reach the total in two different ways: Each point has 15 lines coming from it. \(16 \times 15=240\) ends. Each line has \(\ldots\) etc.

By the other method there are 15 lines from the first point, 14 more lines from the second, and so on. \(15+14+13+\ldots+2+1\)
A total of . . . etc.
The circles with an odd number of points have a hole at the centre.
It is those with an even number of points which do not have a hole. Why?

The 19 pieces should make a 100 squrare.

\section*{1557 Spirals}

You might like to make a small poster to display the patterns which you have drawn. You could make other spiral patterns from your own starting shapes.

\section*{1559 Areas of Similar Shapes}
a)
b)
c)
d)
e)
\begin{tabular}{|l|l|c|c|l|}
\hline Scale factor & \begin{tabular}{l}
original. corresponding \\
length \\
new length
\end{tabular} & \begin{tabular}{l}
original \\
area \(\left(\mathrm{cm}^{2}\right)\)
\end{tabular} & \begin{tabular}{l}
new \\
area \(\left(\mathrm{cm}^{2}\right)\)
\end{tabular} & \begin{tabular}{l}
original. new \\
area
\end{tabular} \\
\hline \multicolumn{1}{c}{\(/ 2\)} & \(1: 1^{1 / 2}=2: 1\) & 4 & 1 & \(4: 1\) \\
\(1^{1 / 2}\) & \(1: 1^{1} / 2=2: 3\) & 4 & 9 & \(4: 9\) \\
2 & \(1: 2\) & 4 & 16 & \(4: 16=1: 4\) \\
\(2^{1 / 2}\) & \(1: 2^{1 / 2=2: 5}\) & 4 & 25 & \(4: 25\) \\
3 & \(1: 3\) & 4 & 36 & \(4: 36=1: 9\) \\
\(3^{1 / 2}\) & \(1: 3^{1 / 2}=2: 7\) & 4 & 49 & \(4: 49\) \\
\hline
\end{tabular}
- The ratios in column e) are the squares of the corresponding ratios in column b). When the triangle is enlarged by, for example, scale factor 3 , the base becomes 3 times larger and the height becomes 3 times larger, so the area becomes 9 times larger.
\begin{tabular}{|l|c|c|c|c|}
\multicolumn{1}{c}{ a) } & \multicolumn{1}{c}{ b) } & c) & d) \\
\hline Scale factor & \begin{tabular}{l}
original. corresponding \\
length \\
new length
\end{tabular} & \begin{tabular}{l}
original \\
area \(\left(\mathrm{cm}^{2}\right)\)
\end{tabular} & \begin{tabular}{l}
new \\
area \(\left(\mathrm{cm}^{2}\right)\)
\end{tabular} & \begin{tabular}{l}
original. new \\
area \(\cdot\) area
\end{tabular} \\
\hline \(1 / 2\) & \(4: 2=2: 1\) & 8 & 2 & \(8: 2=4: 1\) \\
\(1^{1 / 2}\) & \(4: 6=2: 3\) & 8 & 18 & \(8: 18=4: 9\) \\
2 & \(4: 8=1: 2\) & 8 & 32 & \(8: 32=1: 4\) \\
\(2^{1 / 2}\) & \(4: 10=2: 5\) & 8 & 50 & \(8: 50=4: 25\) \\
3 & \(4: 12=1: 3\) & 8 & 72 & \(8: 72=1: 9\) \\
\(3^{1 / 2}\) & \(4: 14=2: 7\) & 8 & 144 & \(8: 144=4: 49\) \\
\hline
\end{tabular}
- The ratios in column e) are the squares of the corresponding ratios in column b).

\section*{1559 Areas of Similar Shapes (cont)}

The hexagon
a) \(16 \mathrm{~cm}^{2}\)
b) \(1 \mathrm{~cm}^{2}\)
c) \(49 \mathrm{~cm}^{2}\)

The pentagon a) \(24 \mathrm{~cm}^{2}\)
b) \(1.5 \mathrm{~cm}^{2}\)
c) \(73.5 \mathrm{~cm}^{2}\)

\section*{Summary}

When a shape is enlarged by scale factor \(n \bullet\) the corresponding angles are equal
- the ratio of the sides is \(1: \mathbf{n}\)
- the ratio of the areas is \(1: \mathbf{n}^{2}\)

\section*{1560 Similarity Problems}

All answers are rounded correct to 2 decimal places.
1.
\begin{tabular}{|c|c|c|c|}
\hline Radius (cm) & Diameter (cm) & Circumference (cm) & Area \(\left(\mathrm{cm}^{2}\right)\) \\
\hline 2 & 4 & 12.57 & 12.57 \\
4 & 8 & 25.13 & 50.27 \\
\hline
\end{tabular}

With enlargement scale factor 2.
\begin{tabular}{lll}
Ratio of diameter & \(4: 8\) & \(=1: 2\) \\
Ratio of circumference & \(12.57: 25.13\) & \(=1: 2\) \\
Ratio of area & \(12.57: 50.27\) & \(=1: 4 \quad=1: 2^{2}\)
\end{tabular}

The results do agree with the summary.
2. \(15 \mathrm{~cm}^{2}\)
3. a) 3.75 cm
b) \(\quad 18.75 \mathrm{~cm}^{2}\)
4. \(10^{2} \times 90=9000 \mathrm{~g}=9 \mathrm{~kg}\)
5. \(4^{2} \times 18=288\)
6. Area on map is approximately \(16 \mathrm{~cm}^{2}\).

Area of forest is \(16 \times(50000)^{2} \mathrm{~cm}^{2}=4 \mathrm{~km}^{2}\).

a) Translation \(\binom{-7}{-5}\)
b) Rotation through \(180^{\circ}\) about \((0,0)\)
c) Reflection in \(y=-x\)
d) Rotation through \(90^{\circ}\) anticlockwise about (0,0)
e) Translation \(\binom{10}{0}\)

1562 Combined Reflections

a) Rotation through \(180^{\circ}\) about \((0,0)\)
b) Reflection in \(y=0\), (\(x\) axis)
c) Rotation through \(180^{\circ}\) about \((0,0)\)
d) Reflection in \(y=-x\)

\section*{1564 Curvitiles}
1. The other closed curve is bottom left.

2. There are many possible answers which have no closed curves.
3. There are many possible answers which have more than 5 closed curves.
4. It is possible to make 11 closed curves.
5. Yes. Again there are many possible answers.
6. You may like to make a folder of your own designs.

\section*{1565 Symmetry}

Use a mirror to check that your drawings are complete and correct.
Did you remember to answer the sums?

\section*{1566 Finding Square Roots}

This method for finding square roots is called 'trial and improvement'.
You will know when your answer is correct because the check is to multiply the square root by itself:
\[
\text { square root } x \text { square root }=\text { number }
\]

This statement will remind you that the square of "the square root of \(n\) " is \(n\). This can be written \((\sqrt{ } n)^{2}=n\)

You should continue to make guesses until you get the target number correct to 3 decimal places.
e.g. \(\sqrt{12} 3.464 \times 3.464=11.999296\)

The guess 3.464 is good enough because the answer is equivalent to 12 (to \(3 \mathrm{~d} . \mathrm{p}\).)

\section*{1568 Velocity from Distance-Time Graphs}
1. This is a possible example:

The gradient of the tangent to the curve when the car stops is 0 .

\section*{1568 Velocity from Distance-Time Graphs (cont)}
2.

3.

Your answers may vary slightly from these.
a) \(60 \mathrm{~km} / \mathrm{h}\)
b) \(78 \mathrm{~km} / \mathrm{h}\)
c) From chord, time between distance 30 km and 90 km
\(=11.22-10.42 \mathrm{~h}=40\) minutes
Gradient of chord joining \(\mathrm{y}=30\) to \(\mathrm{y}=90\)
\(\approx \underline{60}=90 \mathrm{~km} / \mathrm{h}\)
40/60
d) maximum velocity from tangent at 11.00
\[
\approx \frac{104-12}{1}=92 \mathrm{~km} / \mathrm{h}
\]
4.

Your answers may vary slightly from these.
a) from line 1, velocity \(=\frac{44-0}{0.5}=88 \mathrm{~km} / \mathrm{h}\) 0.5
b) from tangent 1, velocity \(\approx \underline{58-26}=64 \mathrm{~km} / \mathrm{h}\) 0.5
c) from tangent 2 , velocity \(\approx \underline{70-24}=230 \mathrm{~km} / \mathrm{h}\) 0.2
5. Your answers may vary slightly from these.
a) \(13 \mathrm{~m} / \mathrm{s}\)
b) 2.5 s

\section*{1569 Distance, Velocity and Acceleration}

\section*{Section A}
1. Graph ii) is the only one which could correspond to the acceleration-time graph. The acceleration-time graph shows constant acceleration which implies constantly increasing velocity.
2. a)

b) i) at \(\mathrm{t}=2\) acceleration \(=\frac{2}{2.5}=0.8 \mathrm{~m} / \mathrm{s}^{2}\)
ii) at \(t=4 \quad\) acceleration \(=\frac{2}{1.25}=1.6 \mathrm{~m} / \mathrm{s}^{2}\)
c) \(\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2}\) when \(\mathrm{t}=2.5 \mathrm{~s}\)

\section*{Section B}
1. Here are some possible examples:
a)

2. a) true
b) false The correct answer is 275 cm
c) true
d) false

The correct answer is \(-2 \mathrm{~cm} / \mathrm{s}^{2}\)
3. a) The acceleration changes instantaneously from \(10 \mathrm{~cm} / \mathrm{s}^{2}\) to \(5 \mathrm{~cm} / \mathrm{s}^{2}\) when the object has a velocity of \(15 \mathrm{~cm} / \mathrm{s}\).
b) The object is moving with a constant velocity of \(20 \mathrm{~cm} / \mathrm{s}\).
c) The object is decelerating at \(10 \mathrm{~m} / \mathrm{s}^{2}\) and has a velocity of \(10 \mathrm{~cm} / \mathrm{s}\).
d) 20 cm
4. a)

b) Area of trapezium \(1=1 / 2(6+9)=7.5\)

Area of trapezium \(2=1 / 2(9+10)=9.5\)
Area of trapezium \(3=1 / 2(9+10)=9.5\)
Area of trapezium \(4=1 / 2(6+9)=7.5\)
At \(t=1\), velocity \(=7.5 \mathrm{~cm} / \mathrm{s}\)
At \(t=2\), velocity \(=7.5+9.5=17 \mathrm{~cm} / \mathrm{s}\)
At \(t=3\), velocity \(=17+9.5=26.5 \mathrm{~cm} / \mathrm{s}\)
At \(t=4\), velocity \(=26.5+7.5=34 \mathrm{~cm} / \mathrm{s}\)

\section*{1569 Distance, Velocity and Acceleration (cont)}
4.

d) Total distance travelled by the object is represented by the area under the velocity-time graph, this is approximately a triangle.

Distance travelled \(\approx 1 / 2(4 \times 34)=68 \mathrm{~cm}\).

\section*{1570 Pounds and Pence}

1

2.

\section*{1571 Keyboard Patterns}
1. This calculation always gives 27 for this keyboard.
2. This calculation always gives a multiple of 11 .
3. Write about your patterns.

1572 " \(50 \%\) is Half Marks"

\section*{1578 Slicing a Triangle}

Make a poster of your sliced triangle designs.

\section*{1579 Points and Buffers}

1 point and 2 buffers cannot make a connected layout.
Here is one connected layout with 3 points and 1 buffer:

3 lines meet at a point, and 1 line at a buffer. You may be able to notice what connections are possible if you look at
... an even number of points with an even number of buffers?
... an odd number of points with an odd number of buffers?
... an odd and an even number of each?

There are many possible answers to these questions, except Rep-3 and Rep-2.
It is not possible to make the \(T\) shape which is Rep-4. However, there are many examples of shapes that are Rep 4.

An example of a Rep-2 rectangle is A4 paper, but this cannot be drawn on the grid.

\section*{1581 Patterns and Shapes}

There are many shapes possible. Make a poster with your designs.

\section*{1582 Deal a Card Experiment}

This is one way you could lay out your results:
\begin{tabular}{|l|c|c|c|c|c|}
\hline & One ace & 6 or 7 Red & 2,3 or 4 Court cards & a 10 and a 6 & 5,6 or 7 cards under 6 \\
\hline Hand 1 & \(\sqrt{2}\) & \(x\) & \(\sqrt{2}\) & \(\sqrt{ }\) & \(x\) \\
\hline Hand 2 & \(x\) & \(\sqrt{ }\) & \(x\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1583 Marbles

The second diagram, which gives \(1,3,4\) with 8 marbles would give \(2,6,8\) with 16 marbles.

These are possible networks, you may have found different ones.

\section*{1589 Square Roots Investigation}

For any number that you choose, the square root of the square root of the square root, etc . . . approaches 1.

This can be written \(\quad \ldots \sqrt{ } \sqrt{ } \sqrt{ } \sqrt{ } \sqrt{ } x \rightarrow 1\).
To form the sequence where the number is doubled after you take the square root, \(\ldots 2 \sqrt{ }(2 \sqrt{ }(2 \sqrt{ }(2 \sqrt{ }(6.8))))\). you may use a spreadsheet or a graphic calculator.

This spreadsheet shows the beginning of the sequence \(\ldots 2 \sqrt{ }(2 \sqrt{ }(2 \sqrt{ }(2 \sqrt{ }(6.8)))) \ldots\)
\begin{tabular}{|c|r|}
\hline & \multicolumn{1}{|c|}{\(\mathbf{A}\)} \\
\hline \(\mathbf{1}\) & 6.8 \\
\hline 2 & 5.21536192 \\
\hline 3 & 4.56743338 \\
\hline 4 & 4.27431088 \\
\hline 5 & 4.13488132 \\
\hline 6 & 4.06688152 \\
\hline 7 & 4.03330213 \\
\hline 8 & 4.01661655 \\
\hline 9 & 4.00829967 \\
\hline 10 & 4.00414768 \\
\hline
\end{tabular} Formula
\(\longleftarrow=2 * \operatorname{SQRT}(A 1)\)
Fill Down

The same sequence may be formed on a Texas TI-81 graphic calculator.
\begin{tabular}{|c|c|}
\hline Key press & Screen display \\
\hline \begin{tabular}{l}
(6) (8) Enter
(2) © Ans Enter \\
Enter \\
Enter
\end{tabular} & \\
\hline
\end{tabular}

What happens in the sequence \(\ldots 2 \sqrt{ }(2 \sqrt{ }(2 \sqrt{ }(2 \sqrt{ }(x)))) \quad \ldots\) if \(x\) is more than 4 ?
... if \(x\) is less than 4 ?
\(\ldots\) if \(x\) is equal to 4 ?
Answering these three questions will help you to investigate what happens when you multiply the square root by \(3,4, \ldots \mathrm{k}\).

You may look at sequences formed from cube roots \(\sqrt[3]{ }\)
fourth roots \(\sqrt[4]{ }\)
.
pth roots \(\sqrt[p]{ }\)

Describe the best strategy to win this game.

\section*{1591 Domino Sums}

It is possible to make domino sums so that no dominoes are left over.
To do this, you may need to do some sums like

1592 Two Cuts Investigation
Use Smile 2163 Geometry Facts section on polygons to help you describe all the shapes you found in this investigation.

\section*{1594 Find the Objects}

Objects you may have found are:
\begin{tabular}{llll}
torch & telephone & pencil-sharpener & key \\
eraser & shuttlecock & camera & paint-brush \\
box of matches & lipstick & penknife & bottle of glue \\
spanner & kettle & table-tennis bat & mug \\
pair of scissors & paper-clip & whistle &
\end{tabular}

\section*{1595 Shunting}

Make sure somebody else can understand how you have recorded the shunting steps.

\section*{1596 Count a Counter}

There are several different ways of moving the counters, but these drawings may help you to see one way:

1 move

2 moves

3 moves

5 moves

...?...

1 moves

2 moves

3 moves

...?...

In what ways are these two series similar?

\section*{1597 Animals}

There are several answers possible depending upon which shapes you make.
For example, with 3-counter-objects you could make and
which are all animals.
This should enable you to decide which of the three statements on page 14 are true. Write a summary of your investigation.

\section*{1598 Animal Algebra}

There are several different ways to reduce each combination but you should reach the same answer whichever you use.

Here is one example for each:
1. \(\mathrm{ACACACAC}=\mathrm{CAC} C A C A C\)
\[
\begin{aligned}
& =\text { CACC AC AC } \\
& =\text { CAACAC } \\
& =\text { C CAC } \\
& =A C
\end{aligned}
\]

1598 Animal Algebra (cont)
2. \(\mathrm{ACBCBC}=\mathrm{AC} \mathrm{CBC} \mathrm{C}\) = ACC BCC
\(=A B\)
3. \(\mathrm{ACA} \mathrm{BCB} C=\mathrm{CAC} \mathrm{CBC} \mathrm{C}\)
\(=\mathrm{CACCBCC}\)
\(=\mathrm{CAB}\)
There are also many different ways to make longer routes. If you have difficulty with questions (4) and (5), the examples at the bottom of page 16 should help you.

\section*{1600 Slabs}

Because there are so many systems to explore, your drawings will need some brief notes about the rules which you have used.

Answers•Answers•Answers

\section*{1301}
to
1600

Answers```

