

go further with

 INVESTIGATIONS

For National Curriculum
levels 3-6

SPECTRUM MATHS

Acknowledgements

The author and publisher would like to thank Ann Nimmo, John Walker and Anne Woodman for their helpful comments on the Spectrum Maths material.

This Edition 1992 by
CollinsEdúcational
77-85 Fulham Palace Road
Hammersmith London W6 8JB
First published 1989 by Unwin Hyman Ltd, London
Reprinted 1993, 1996

(C) Dave Kirkby 1989

The purchase of this copyright material confers the right on the purchasing institution to photocopy the pupils' pages without any specific authorisation by the publisher. No other part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of CollinsEducational.

British Library Cataloguing in Publication Data
Kirkby, Dave
Spectrum mathematics.
: Go further with investigations.

1. Mathematics, for schools.
I. Title

510
ISBN 0003126951

Designed and illustrated by AMR, Basingstoke
Typeset by Microset Graphics Ltd, Basingstoke
Printed in Great Britain by Martins the Printers, Berwick on Tweed

Contents

	Title	Content	Apparatus	Paper
1	Sum hope	Addition	Number cards	
2	Half-cut	Shape patterns		Squared
3	Folding square	Number patterns	Paper squares	
4	Top brick	Multiplication	Calculators	
5	Take-away time	Subtraction	Number cards	
6	Parallels	Polygons	Geoboards	Special paper 4
7	Up the wall	Subtraction		Special paper 2
8	Hexagon cut	Number patterns	Polygon templates	
9	Factors	Division		
10	Big square	Shape patterns	Squares	Special paper 1
11	Triangles	Triangles	Geoboards	Special paper 4
12	Times square	Multiplication	Number cards	
13	Tables	Multiplication/Number patterns		
14	Triangle search	Triangles		Special paper 3
15	Stages	Shape patterns		Special paper 5
16	Number nine	Mixed number operations	Number/operation cards	
17	May days	Addition/Number patterns	Calendars	
18	Nets	Cubes	Card	Squared
19	Corners	Addition		Squared
20	Nearest wholes	Decimals	Number cards	
21	Equations	Mixed number operations	Number/operation cards	
22	Double measures	Area/Perimeter	Squares	Squared
23	Quadrilaterals	Polygons	Geoboards	Special paper 4
24	Production lines	Multiplication/Number patterns		Squared
25	Divisions	Division	Number/operation cards	
26	Foursomes	Shape patterns	Card squares	
27	Dotty squares	Area	Geoboards	Special paper 4
28	Trials	Addition		Squared
29	Elevenses	Multiplication/Number patterns	Calculators	
30	Tri-hard	Polygons	Card squares	Squared
31	Square search	Squares/Number patterns		Squared
32	Total amazements	Addition	Number cards	
33	Signs	Mixed number operations	Calculators	
34	Regions	Shape patterns	Circles	
35	Perimeter dots	Triangles		Special paper 5
36	Hard times	Multiplication	Number cards/ calculators	
37	Multiples	Multiplication	Number cards	
38	Face to face	Number patterns	Cubes	
39	Pentagon patterns	Shape patterns		Special paper 3
40	Remainders	Division/Number patterns		

Content Focus

Topic	Starting Investigations	More Investigations	Go Further With Investigations
Addition	$\begin{aligned} & 2,3,7,9,10,12,15,17,19 \\ & 24,25,29,30,31,33,35,38 \end{aligned}$	$\begin{aligned} & 2,11,21,25,32,36, \\ & 37 \end{aligned}$	1,17, 19, 28, 32
Subtraction	14, 39	17	5,7
Multiplication		6, 7, 8, 12, 33	${ }_{37}^{4,12,13,24,29,36},$
Division			9, 25, 40
Mixed number operations		29	16, 21, 33
Place value	40	1,13, 16, 28	
Odds and evens	1,23		
Decimals			20
Number patterns	8, 13, 28, 36	8, 19, 21, 32, 36, 37	$\begin{aligned} & 3,8,13,17,24,29, \\ & 31,38,40 \end{aligned}$
Money	7,15, 19, 38		
Colour patterns	4, 22, 26, 27, 34		
Shape patterns	$4,8,11,20,32,37$	$\begin{aligned} & 5,9,18,20,22,23, \\ & 24,26,27,39,40 \end{aligned}$	$2,10,15,26,34,39$
Shape	5	15	
Triangles			11, 14, 35
Squares		4	31
Rectangles	21	30	
Polygons		3,14,35	6, 23, 30
Cubes			18
Symmetry		10	
Area	6, 16, 18	12,31, 27	22, 27
Perimeter		12,38	22.

Apparatus Focus

Apparatus	Starting Investigations	More Investigations	Go Further With Investigations
Calculators			4, 29, 33, 36
Calendars		37	17
Card			18
Circles			34
Coins	7, 15, 19, 38		
Counters	27, 28	24	
Cubes	8, 13, 20, 34	34	38
Dice	23, 25, 39	2,33	
Dominoes	1,3,30		
Geobards		4,31	6, 11, 23, 27
Hexagons	32		
Mirrors		10	
Number balance	12		
Number cards	2, 10, 14, 17, 29, 40	1, 7, 11, 13, 16, 17, 25, 28	1, 5, 12, 16, 20, 21, 25, 32, 36, 37
Number rods	21, 24, 31, 33, 36, 37	21	
Operation cards			16, 21, 25
Polygons			8
Rectangles	4, 9, 11	14	
Scissors	5		
Scrap paper	5		
Squares	22	3, 9. 26, 38, 40	3, 10, 22, 26, 30
Triangles		22	

Using the Teacher's Notes

CONTENT

This heading states the focus of the investigation in terms of a particular mathematical topic, e.g. Triangles, Addition, Number patterns.
A more detailed description of the potential content is outlined here on each of the teacher's pages.

Apparatus

This section indicates to the teacher what apparatus is likely to be required for the investigation, e.g. Cubes or Number cards. Where appropriate, the teacher is alerted to the availability, at the back of the book, of a 'special paper' which the pupils can use to record their work.

LEVEL	UA	N	SSM	HD	A
1					
2					
3					
4					
5					
6					

KEY UA Using and Applying Mathematics N Number SSM Shape, Space and Measures HD Handling Data
A Algebra

The teacher's notes for each investigation contain the above table. This table refers to the Programmes of Study and Levels 1-6 of the National Curriculum. An attempt has been made to locate, by means of dots in the table, the approximate content level for each investigation but it must be appreciated that many activities can be performed at a variety of different levels. A column for Algebra has been included for those using this book at Key Stage 3.

This section contains the teaching notes but not necessarily the answers. The notes are intended as a guide to the possible directions the investigation may take. They contain background mathematics for the teacher, but should not be seen as an indication of what can be expected from all pupils. The pupils should feel free to follow their own lines of enquiry, which may very well not coincide with these notes.
This section may also include suggestions about recording, points for discussion, warnings, etcetera

QUESTIONS

These suggested follow-up questions may lead to further investigations. They may also provide teachers with some ideas for potential areas for development. Many of the investigations are rich in opportunities for introducing a variety of mathematical ideas. Questions can help to link different ideas and concepts. Although the questions are written simply, teachers may need to adapt the phrasing and language to suit their pupils.

EXTENSIONS

It is hoped that pupils will develop sufficient interest and confidence to extend their work in their own way.

This section contains suggestions that teachers may wish to use with particular pupils, whilst encouraging them to develop their own ideas.

Using the Pupils' Sheets

You will need
The basic information about apparatus also appears on the pupils' sheets, so that the children have some idea of what materials they need.

The pupils' sheets are written using as few words as possible. However, pupils may still need some help in getting started.

Find or Investigate precedes an indication of where to start. Sometimes the indication is deliberately vague.

Encourage the pupils to become responsible for their own lines of enquiry, and to extend them in some way.

INTRODUCTION

Most schools use a mathematics scheme. Teachers using these require a range of support material to supplement the scheme. Such material is provided by Spectrum Maths.

This is a series of three books of investigations primarily for the primary years, although secondary school teachers with low attaining pupils will also find these books useful.

They are defined in terms of three ability levels. Broadly defined, these levels are:
Starting Investigations (Infants)
More Investigations (Lower Juniors)
Go Further With Investigations (Upper Juniors)
Each book contains:
40 pupil investigations in the form of photocopymasters.
Detailed teacher notes accompanying each investigation.
Special papers in the form of photocopymasters to aid pupils to record their work.

HOW CAN IT BE USED?

Spectrum Maths investigations can be used in a variety of ways:
(a) to consolidate other work in the school mathematics scheme
(b) as a completely separate supplement to the scheme
(c) as a means of introducing a new topic within the scheme
(d) to provide enrichment material at appropriate times.

The 40 pupil investigations in each book are non-sequential. Investigations can be selected by the teacher to suit individual needs. The teacher's notes contain clear indications of both the content area and the required apparatus for each investigation. This will aid the teacher who wishes to be selective. Some teachers may wish to select a group of investigations based on a particular mathematical theme e.g. multiplication. Others may choose investigations requiring the use of a particular piece of apparatus e.g. cubes.

The material is flexible in terms of organisation.
Some examples include:
Individual investigations: pupils working individually on their own particular investigation.

Small group investigations: the class divided into groups, each group working on a different investigation.

Class investigation: the whole class working on the same investigation. This may be the easiest form of organisation for teachers who are starting on this type of work.

School investigation: several classes working on the same investigation. This enables teachers to discuss and compare experiences amongst each other. It can also lead to combined work displays.

WHAT IS AN INVESTIGATION?

An investigation presents pupils with an open mathematical situation and invites them to explore it.

In most mathematical activities, a goal is specified and an answer is sought. There is no 'answer' to an investigation. It is the 'journey', not the 'destination' which is the goal.

The Spectrum investigations pupil material provides guidelines and suggestions of ways in which the pupil explorations may lead, and ideas for helping pupils continue their 'journey'.

As pupils become practised in making 'journeys' they will need to experience some of the following:
understanding the starting point
trying some examples
recording results (diagrams, tables, drawings, lists etc.)
devising methods of recording
spotting patterns
describing patterns
checking results
generalising results
systematically organising the 'journey'
devising strategies
writing an account of the 'journey'
extending the 'journey'
The 'journey' is often referred to as 'mathematical process' and lists like those above as 'process objectives'.

CALCULATORS

Spectrum Mathematics: Investigations does not contain many activities which focus on the use of a calculator. Nevertheless, pupils will often find a calculator a valuable aid, particularly when extending an investigation. The provision of calculators is left to the discretion of the teacher.

The activities which a calculator may be required are:
Starting Investigations $2,7,8,10,15,17,19,25,33,35,38$.
More Investigations 2, 7, 11, 12, 17, 21, 25, 29, 32, 33, 37.
Go Further With Investigations $1,4,5,7,9,12,13,16,17,19,21,25,29,33,36,40$.

ADDITION

Addition of three two-digit numbers.
Finding the different totals possible using six given digits.

Apparatus

Use cards numbered 1 to 9 .

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet	\bullet			
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Addition of two-digit numbers.
- Number patterns.
- Generalise patterns in words.
- Recording results.

There are twelve different possible totals:

16	14	14	13	14	13
37	37	36	46	36	46
+49	+69	+79	+79	+97	+97
102	120	129	138	147	156
13	13	31	31	41	61
64	74	64	74	73	73
+97	+96	+97	+96	+96	+94
174	183	192	201	210	228

In each case, various different arrangements of the digits will produce the same total.

QUESTIONS

What is the smallest/greatest possible total?How many different totals are there altogether?
(?)
Can you find an arrangement to total 120 ?What is the digital sum of each total?

EXTENSIONS

Try with a different set of cards.Try exploring different arrangements of the digits which give a total of 102.Try with a different arrangement, egg.

SHAPE PATTERNS

Different ways of dividing a 4×4 square grid in half. Area. Symmetry.

Apparatus

Use squared paper for drawing the grids and illustrating the cuts.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet	\bullet		
3	\bullet		\ominus		
4	\bullet		\bullet		
5	\bullet				
6	\bullet				

Area.
Recognise rotations.
Sorting shapes in different ways.

- Constructing shapes.

Recording and classifying results.

The different cuts can be separated into types:
Horizontal and vertical lines only

Combinations of horizontal, vertical and sloping lines

QUESTIONS

EXTENSIONS

What is the area of the starting grid?Try different sized starting grids.What is the area of each half?Try cutting grids into four.
Which cuts look the same upside down?

K@lfocut

Start with a 4×4 square.

Find ways of cutting it in half.
Here are three ways:

| | | |
| :--- | :--- | :--- | :--- |
| | | |

Find other ways of cutting the square in half.

NUMBER PATTERNS

Folding a 3×3 square arrangement of digits to produce two-digit numbers. Finding all possible positions for the folds.

Apparatus

Square pieces of paper (approximately $15 \mathrm{~cm} \times 15 \mathrm{~cm}$) are required.

LEVEL	UA	N	SSM	HD	A
$\mathbf{1}$					
$\mathbf{2}$		\bullet	\bullet		
$\mathbf{3}$	\bullet	\bullet			
$\mathbf{4}$	\bullet				
$\mathbf{5}$	\bullet	\bullet			
$\mathbf{6}$	\bullet				

- Number patterns.
- Primes, multiples.
C Creating patterns through folding a
square.
Recording observations.

There are 32 possible two-digit arrangements.
These 24 are relatively easy to find:

These 8 are more difficult:

The two-digit numbers can then be tabulated according to first digits:

1	2	3	4	5	6	7	8	9
12	21	31	45	51	63	71	81	92
13	25	36	46	54	65	73	83	92
15	27	36	49	54	68		89	98
17	29			56			89	98
18								

The ringed numbers are repeats. So there are 27 different two-digit numbers.

QUESTIONS

What is the smallest/greatest two-digit number?

How many numbers between 60 and 70 can be found?
(?) Which numbers can be found in different ways?

How many numbers with a units digit of 1 can be found?

EXTENSIONS

Try with a different arrangement of digits.Try with a 4×4 square.Θ Try exploring the sum of the two digits.

Folding square

You will need
a large piece of paper (about $15 \mathrm{~cm} \times 15 \mathrm{~cm}$).

Draw a 3×3 grid. Crease along the lines.

Write these numbers in the squares.

Fold the paper to show two horizontal digits.

$\underline{\mathbf{9}}$	$\mathbf{2}$	$\mathbf{5}$				
$\mathbf{4}$	$\underline{\mathbf{6}}$	$\mathbf{8}$				
$\mathbf{1}$	$\mathbf{7}$	$\mathbf{3}$	\rightarrow	8	3	$\underline{6}$
:---	:---	:---				
5	4	$\underline{9}$				
2	7	1				

4.5 - the number 45

How many other two-digit numbers can you find?

Top brick

MULTIPLICATION

Multiplication facts.

Apparatus

Calculators may be necessary for some of the harder multiplications, especially when larger numbers are written on all the starting bricks.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\ominus	\bullet			
4	\ominus	\bullet			
5	\ominus				
6	\ominus				

- Multiplication facts up to 10×10.
- Number patterns.
- Recording outcomes.

One strategy is to consider different centre numbers in the first layer, and then the different possible combinations for the other two numbers:

So, there are only four different top bricks: $6,24,54,216$.

QUESTIONS

Which bottom row gives the smallest/greatest number on the top brick?
?
Which bottom rows give the same number on the top brick?

EXTENSIONS

Try with different numbers on the starting bricks.Try with pyramids of different sizes, e.g.

Try with different rules for finding the numbers.

Top brick

You will need a calculator

Start with a line of four bricks numbered 1, 1, 2, 3.

To find the numbers on the next row of bricks, multiply like this. \longrightarrow

$$
2 x 1=2 \quad 1 \times 3=3 \quad 3 x 1=3
$$

Build a pyramid.

Now put the bottom bricks in different places and build other pyramids.

Try with different numbers in the bottom row.

SUBTRACTION

Subtraction of a two-digit number from another two-digit number. Searching for all the possible answers, using four given digits.

Apparatus

Use cards numbered 1 to 9.

The possible arrangements are:

$$
\begin{array}{rrrrr}
54 \\
-37 \\
\hline 17 & \begin{array}{r}
53 \\
-47 \\
73
\end{array} & \begin{array}{r}
57 \\
23
\end{array} & \begin{array}{r}
57 \\
14
\end{array} & \begin{array}{r}
45 \\
8
\end{array} \\
-43 & 74 & 74 & 75 & 72 \\
\hline 28 & -54 \\
\hline 19 & -53 \\
\hline 21 & \frac{-35}{39} & \frac{-34}{41} & \frac{-43}{32} \\
\hline
\end{array}
$$

Some discussion is necessary to eliminate arrangements such as 37

Alternatively, some pupils may wish to investigate negative answers.
So, there are 12 different answers:
$6,8,12,14,17,19,21,23,28,32,39$ and 41 .

QUESTIONS

How many different answers can be found?
(?) Which is the smallest/greatest possible answer?
(?) Can you find an arrangement with the answer 12 ?

EXTENSIONS

Try with a different set of digits.Try with two digits the same, e.g. 3, 4, 4, 7 .
Θ
Try with three-digit numbers.

Take-away time

You will need these cards
3
4
5 \square

Place them here. $\longrightarrow 1$

Subtract to find the answer.

Examples

How many different answers can you find?

POLYGONS

Drawing polygons with parallel sides on a 3×3 square dotty grid. Naming polygons: square, rectangle, parallelogram, trapezium, pentagon, hexagon.

Apparatus

Use a geoboard for making the different shapes, which can then be recorded on special paper 4.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet		\bullet		
4	\bullet		\bullet		
5	\bullet		\bullet		
6	\bullet		0		

- Area.
- Sorting 2D shapes in different ways.
- Symmetry.
- Constructing different shapes.
- Parallels.
- Congruence of simple shapes.
- Classifying types of quadrilaterials.

One approach is to consider shapes with one pair of parallel sides, then two pairs, and so on.
Some possibilities include:

1 pair

2 pairs

3 pairs

QUESTIONS

(?)
What is the name of each shape? (Square, parallelogram, etc.)

Which shapes are symmetrical?
What is the area of each shape?

EXTENSIONS

Try making shapes on a 3×4 grid.Try making shapes with no parallel sides.

Parallels

You will need square dotty paper a 3×3 geoboard

This shape has one pair

This shape has two pairs of parallel sides.

Find some more shapes with parallel sides.

SUBTRACTION

Differences between two single-digit numbers, extending possibly to differences between two two-digit numbers.

Apparatus

Use special paper 2 for the walls.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet	\bullet			
4	\bullet	\bullet			
5	0				
6	\bullet				

- Subtraction facts up to 20 .
- Subtraction of two two-digit numbers.
- Recording results.

The wall ends with

Here are some other examples:

5-layer wall
Pupils can try to find walls of different heights.

QUESTIONS

EXTENSIONS

(?) Do all walls end in | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |

(?) Does the starting arrangement make any difference?
(?) Is it possible to make a wall with more than 6 layers?

Try with larger numbers, e.g. 32, 48, 61, 75.Try with 3 starting numbers, then 5 starting numbers.

Write the numbers on a wall and go on upwards.
 Hexagon cut

NUMBER PATTERNS

Patterns in the numbers of diagonals in polygons with varying numbers of sides.

Apparatus

Use templates of regular hexagons for drawing the outlines.
Regular pentagons and octagons will also be useful.

LEVEL	UA	N	SSM	HD	A
$\mathbf{1}$					
$\mathbf{2}$		\bullet			
$\mathbf{3}$	\bullet	\bullet			
$\mathbf{4}$	\bullet	\bullet	\bullet		
$\mathbf{5}$	\bullet				
$\mathbf{6}$	\bullet				

- Explaining and predicting number
patterns.
- Generalise patterns in words.
Constructing shapes.

The diagonals look like this.

There are 6 vertices, and 3 lines drawn from each.
$6 \times 3=18$ lines
Each line has been counted twice
(both ends). So the total number of diagonals is 9 .
For a 5 -sided polygon, the number of diagonals is

For a 6-sided polygon, the number of diagonals is 9 .
For a 7 -sided polygon, the number of diagonals is 14 .
For an 8 -sided polygon, the number of diagonals is 20 .
Generally, for an n-sided polygon there are $\frac{n(n-3)}{2}$ diagonals.

QUESTIONS

Are all the diagonals the same length?

What do you notice if you rotate the drawing?

Where do lots of diagonals meet?

EXTENSIONS

Try colouring a pattern in the completed drawing.

Try a non-regular hexagon.

Try polygons with different numbers of sides.Try investigating the number of intersections of the diagonals.

Try investigating the number of regions produced.

Factors

DIVISION

Divisors or factors of different numbers.
Prime numbers. Square numbers.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet			\ominus	
4	\bullet	\bullet		\bullet	
5	\bullet	\bullet			
6	\bullet				

- Division.
- Multiples. Factors. Prime numbers.
- Square numbers.
- Recording data in a table.
- Extracting information from a table.
- Grouping and ordering data.

Pupils could start by making a list.

Number	Factors	Total
1	1	1
2	1,2	2
3	1,3	2
4	$1,2,4$	3
5	1,5	2
6	$1,2,3,6$	4
7	1,7	2
8	$1,2,4,8$	4
9	$1,3,9$	3
10	$1,2,5,10$	4

Number	Factors	Total
11	1,11	2
12	$1,2,3,4,6,12$	6
13	1,13	2
14	$1,2,7,14$	4
15	$1,3,5,15$	4
16	$1,2,4,8,16$	5
17	1,17	2
18	$1,2,3,6,9,18$	6
19	1,19	2
20	$1,2,4,5,10,20$	6

Numbers with:
2 factors - $2,3,5,7,11,13,17,19-$ Prime numbers
3 factors - 4, 9, 25, 49 - Square numbers
4 factors $-6,8,10,14,15$
5 factors - 16, 81 - Square numbers
6 factors - $12,18,20,28,32$
Numbers with 3 factors are the squares of prime numbers.

QUESTIONS

EXTENSIONS

Which numbers have 2 factors?? Which number has the most factors?Can you find a number with 8 factors; 10 factors; . . .?

What numbers have an odd number of factors?

Try extending the lists of numbers.
Try summing the factors of a number.

Big square

SHAPE PATTERNS

Making different patterns based on 4 half-coloured squares. Symmetry. Conservation of area.

Apparatus

Colour half of each of four card squares for use in making the different patterns.
Use special paper 1 for recording.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet	\bullet		
3	\bullet		\ominus		
4	\bullet				
5	\bullet				
6	\bullet				

Creating patterns.

- Sorting patterns in different ways.
- Symmetry.

Recording patterns.

- Choosing classification criteria.

The patterns can be divided into types:

Square patterns

Cross patterns

Diagonal patterns

QUESTIONS

(?)
What is the area of the coloured part of each pattern?

Which patterns are symmetrical?
(?)
How many lines of symmetry does each pattern have?

EXTENSIONS

Try exploring patterns in a 4×1 rectangle.

Try with squares which are three-quarters coloured.Try with

to make circular patterns.

Big square

You will need squares big squares paper

Make 4 squares like this.

Place them in this big square to make patterns.

Make some other patterns.

TRIANGLES

Making different triangles on a 3×3 geoboard. Types of triangle: right-angled, isosceles, acute-angled, obtuse-angled. Rotations and reflections.

Apparatus

Use a geoboard for making the different shapes, which can then be recorded on special paper 4.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet	\bullet		
3	\bullet		\bullet		
4	\bullet		\bullet		
5	\bullet		\ominus		
6	\bullet				

Recognition of rotations and reflections.
Sorting shapes.
Constructing different shapes.
Congruence of simple shapes.
Angle properties of triangles.
Recording results.

It is probably easier to assume that reflections and rotations of a shape are identical to the original shape.
e.g.

and
 identical to

Then there are 8 different triangles:

The triangles could be labelled; right-angled, isosceles, etc.

QUESTIONS

? Which triangles are right-angled?
(?) Which triangles are isosceles?
? Which triangles are symmetrical?
? Which triangle has the smallest/largest area?

EXTENSIONS

Try exploring different positions of the same triangle.

Try making quadrilaterals on a 3×3 board.

Try making triangles on other boards, e.g. $3 \times 4,4 \times 4$.

TRimes square

MULTIPLICATION

Multiplication facts up to 10×10.
Arrangements of four different cards in a 2×2 square.

Apparatus

Use cards numbered 1 to 10 .

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet	\bullet			
4	\bullet	\bullet			
5	\bullet				
6					

- Multiplication facts up to 10×10.
- Number patterns.
- Recording results.

For these four cards there are many possible arrangements, but only 6 possible products: $20,24,28,30,35,42$

4	$\underline{6}$	24
5	7	35

4	5	20
6	7	

4	7
	28
5	6
30	

This is usually true for any four cards, except sets such as
$3 \quad 4 \quad 6 \quad 8$. Then, since $3 \times 8=4 \times 6$,
there is one less possible product:

In this case, the 5 possible products are:
$12,18,24,32,48$

QUESTIONS

EXTENSIONS

How many different arrangements of the 4 cards are there?Try other sets of 4 cards.

Which rows give the smallest/greatest possible products?

Try choosing from a set of 5 cards.

Try 6 cards in a 3×2 arrangement.
? What happens if two cards are the same?

Tables

MULTIPLICATION

NUMBER PATTERNS

Multiplication tables.
Numbers and their factors.
Common multiples.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet	\bullet			
4	\bullet	\bullet			
5	\bullet	\bullet			
6	\bullet				

- Multiplication facts up to 10×10.
- Number patterns.
- Multiples and factors.
- Extracting information from a table.

Pupils can check their tables on a multiplication square.
The multiples are:

x 2	2	4	6	8	10	12	14	16	18	20
x 3	3	6	9	12	15	18	21	24	27	30
x 4	4	8	12	16	20	24	28	32	36	40
x 5	5	10	15	20	25	30	35	40	45	50
x 6	6	12	18	24	30	36	42	48	54	60
x 7	7	14	21	28	35	42	49	56	63	70
x 8	8	16	24	32	40	48	56	64	72	80
x 9	9	18	27	36	45	54	63	72	81	90
$\times 10$	10	20	30	40	50	60	70	80	90	100

There are symmetrical patterns along the diagonals.
10 appears as a multiple of 2,5 and 10.
12 appears as a multiple of $2,3,4$ and 6 .
A table showing the occurrences of particular numbers can be drawn.

Number	Tables			
10	2	5	10	
12	2	3	4	6

QUESTIONS

Which numbers appear many times?
? Which numbers appear most times?
? Which numbers do not appear at all?

EXTENSIONS

Try multiples of numbers greater than 10.Try extending the lists beyond the 10th multiple.Try shading particular numbers on a multiplication square.

Complete this list of multiplication tables.

| | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Can you see any patterns?

How many times does the number 10 appear?

TRIANGLES

Drawing different triangles using the diagonals of a regular pentagon as the sides. Isosceles triangles.

Apparatus

Special paper 3 provides regular pentagons.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet		\ominus		
4	\bullet		\ominus		
5	\bullet		\ominus		
6	\bullet				

Sorting triangles and other shapes.

- Constructing shapes.

Congruence.
Angle properties of triangles.

Pupils need to take care to be accurate when drawing the diagonals and colouring the triangles.
Use a different pentagon for each drawing.
There are five different sized triangles:

1

2

3

4

5

Several triangles of the same size can be found.

For example,
 is the same size as number four above.

QUESTIONS

EXTENSIONS

How many triangles of different sizes can you find?

Which is the smallest/largest triangle?
(?) Which triangles are isosceles?

Try finding the same triangle in different positions.Try exploring four-sided shapes (quadrilaterals).

Try colouring different polygons (3-sided, 4-sided, 5 -sided, . . .) inside the pentagons.Try starting with hexagons.

Triangle search

You will need
pentagon paper

Draw diagonals on a pentagon.

Find a triangle and colour it.

Use other pentagons to find different triangles.

Stages

SHAPE PATTERNS

Different patterns made by routes on a triangular arrangement of dots.

Apparatus

Use special paper 5 for recording.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet		\bullet		
4	\bullet		0		
5	\bullet				
6	\bullet				

- Sorting shapes (routes) in different ways.
Constructing different shaped routes.
- Recording results.

In this investigation, moves like this are not allowed.

One approach is to consider 2-stage routes, then 3-stage routes, and so on.

2 stages

3 stages

4 stages

5 stages

So, there are 10 different routes altogether.

QUESTIONS

(?)
How many different 3-stage routes can be found?
(?) Is it possible to find a 6-stage route? Why not?
(?) Which routes touch all the dots?
? How many dots does each route touch?

EXTENSIONS

Stages

You will need triangle dotty paper

Here are two different routes from S to F.

4 stages

Find some other routes.
Dots can be visited only once.

g_{0} firtherwith
INVESTGATIONS
SPECTRUM
MATHS

MIXED NUMBER OPERATIONS

Operations of addition, subtraction, multiplication and division. The need for brackets.

Apparatus

Use number cards 1 to 9 . Pupils may use an unlimited number of operation cards.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet				
4	\bullet	\bullet			
5	\bullet	\bullet			
6	\bullet				

- Addition, subtraction, multiplication, division.
- Use of brackets.
- Recording results.

Pupils should record results after each use of the cards. There is an opportunity here to introduce the need for brackets:

One approach is to explore all 3-card expressions first, then 4-card expressions, and so on.
Possibilities include:
3 cards: $9=1+8,2+7,3+6,4+5,1 \times 9,9 \div 1$
4 cards: $9=12-3,13-4,14-5,15-6,16-7,17-8,18-9$
$18 \div 2,27 \div 3,36 \div 4,54 \div 6,63 \div 7,72 \div 8,81 \div 9$
5 cards: $9=25-16,35-26,45-36,85-76,95-86,(6 \times 3) \div 2$
$(1+2) \times 3,(7+2) \times 1,(6+3) \times 1,(4+5) \times 1,(2 \times 1)+7,(3 \times 1)+6,(4 \times 1)+5$
6 cards: $9=(16-5)-2,(17-6)-2,(18-7)-2,(19-8)-2,(9 x 3)-18,(9 \times 4)-27$, $(9 \times 5)-36,(56 \div 8)+2,(42 \div 7)+3$
7 cards: $9=(46-39)+2,(82-76)+3,(8 \times 72) \div 64,(7 \times 81) \div 63,(6 \times 81) \div 54$
8 cards: $9=(89-67)-13,(79-56)-14,(12 \times 36) \div 48,(12 \times 63) \div 84$
9 cards: $9=(36-25)+7-9,[(87-65)-9]-4$

QUESTIONS

EXTENSIONS

How many 6-card expressions can you find?
Is it possible to find a 10-card expression, 11-card expression, . . .?

Try limiting expressions to using ' + ' signs only.Try for a different target, e.g. $13,8$.

Number nine

You will need
one set of number cards 1 to 9

some operation cards

$$
\square \square \square \square \square
$$

Make 9. Here are three ways:

Find different ways to make 9.

ADDITION

NUMBER PATTERNS

Patterns in the square arrangements of numbers on a calendar. Addition of two two-digit numbers.

Apparatus

Use the current month on an up-to-date calendar for more impact.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet				
4	\bullet				
5	0				
6	0				

- Addition of two two-digit numbers.
- Explain number patterns.
- Generalise patterns in words.

Some examples are:

8	9	10
15	16	17
22	23	24

$$
\begin{array}{r}
8+24=32 \\
10+22=32
\end{array}
$$

13	14	15
20	21	22
27	28	29

$13+29=42$
$27+15=42$

Generally

a	$a+1$	$a+2$
$a+7$	$a+8$	$a+9$
$a+14$	$a+15$	$a+16$

$$
\begin{aligned}
a+\underline{a+16} & =2 a+16 \\
\underline{a+14}+\underline{a+2} & =2 a+16
\end{aligned}
$$

Note that the sum is 2 x the middle number; i.e.: [2(a+8)].
It is also the sum of these two numbers

and of these two.

QUESTIONS

EXTENSIONS

What is the sum of opposite corners if the top left-hand corner number is 9 ?What is the sum of opposite corners if the bottom right-hand corner number is 17 ?
? What is the sum of opposite corners if the middle number is 10 ?

Try 2×2 squares.
Try 4×4 squares.

Try multiplying the opposite corner numbers together.Try a different month.

Nets

CUBES

Finding different nets of 6 squares which will fold to make a cube.

Apparatus

Use card or squared paper to make the nets.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet				
4	\bullet				
5	\bullet				
6	\bullet				

Constructing nets for cubes.

There are 11 different nets altogether:

Once the nets have been cut out, they can be checked for duplication by trying to place one on top of the other.

QUESTIONS

How many different nets can be made based on a line of four squares?
What is the surface area of a cube?How many joins does each net require?How many faces and edges does a cube have?

EXTENSIONS

Θ
Try nets of 5 squares which fold to make open cubes.Try making nets of a tetrahedron using 4 equilateral triangles.

Try exploring different cubes based on one net and squares of two colours.

ADDITION

Addition of one-digit and two-digit numbers.
Patterns associated with 2×2 square arrangements of numbers within a 6×6 counting square.

Apparatus

Use squared paper to draw the selected 2×2 squares.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet	\bullet			
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Addition of two two-digit numbers.
- Number patterns.
- Generalise patterns in words.
- Recording results.

Pupils should aim to be systematic by considering squares in some sort of sequence. For example, they could move along the top two rows, then the second and third rows, and so on.

The different totals are:

9	11	13	15	17
21	23	25	27	29
33	35	37	39	41
45	47	49	51	53
57	59	61	63	65

There are 25 different possible totals - all the odd numbers between 9 and 65 inclusive, except 19, 31, 43, 55.
If 3×3 squares are considered, the

16	18	20	22
28	30	32	34
40	42	44	46
52	54	56	58

There are 16 different totals - all the even numbers between 16 and 58 inclusive, except 24,26 , $36,38,48,50$.

QUESTIONS

Which square gives a corner total of 23 ?

What is the smallest/greatest corner total?

How many different totals are possible?

EXTENSIONS

Try 3×3 squares, then 4×4 squares.

Try adding all four corner numbers.
Θ
Try with a different sized original grid.

Corners

You will need squared paper

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Choose some 2×2 squares from this grid. Draw them and then add opposite corners.

4	5
10	11

$$
4+11=15
$$

$15+22=37$

Investigate other 2×2 squares.

DECIMALS

Choosing two digits from three to make different decimal numbers of this form:
Finding the nearest whole number to each decimal number.

Apparatus

Use cards numbered 1 to 9 .

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet				
4	\bullet				
5	\bullet	\bullet			
6	\bullet	\bullet			

- Approximate decimal numbers to nearest whole number.

There are six different arrangements of two cards.
nearest
whole number

4.7	\longrightarrow	5
7.4	\longrightarrow	3
3.4	\longrightarrow	4
4.3		
3.7	\longrightarrow	4
7.3	\longrightarrow	

There are four different nearest whole numbers: $3,4,5,7$.
The use of a number line may be helpful to clarify the idea of nearest.

QUESTIONS

EXTENSIONS

What is the nearest whole number to $3 \cdot 4$, $4 \cdot 7$?

Which of the decimal numbers are nearest to 7 ?

Which of the decimal numbers are between 3 and 4 ?Try with a different set of 3 cards.

Try to make more than four different nearest whole numbers.Try with a different arrangement, e.g.

Try with four cards.

Equations

MIXED NUMBER OPERATIONS

Making equations involving addition, subtraction, multiplication, division, and combinations of these. Rearrangements of equations.

Apparatus

Use number cards 1 to 9 , and operation cards $+, x,-, \div$.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet				
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Mixed number operations.
- Simple equations.
- Recording results.

Many equations are possible:
Using $\square+$ only.

Using	-
$5-1$	$=4$
$5-4$	$=1$
$7-5$	$=2$
$7-2$	$=5$
$12-5$	$=7$
$12-7$	$=5$
$(14-5)-7$	$=2$
$(7-4)-2$	$=1$

Using \div only.
$7=5+2$
$12=5+7$
$14=5+7+2$
$5=1+4$
$7-2=5$
$7=1+4+2$
$12-7=5$
$(14-5)-7=2$
$(7-4)-2=1$
$14 \div 7=2$
$14 \div 2=7$

Using $\quad+$ and $-\quad$ Using various combinations.

$$
\begin{aligned}
& 4+2=7-1 \\
& 14=7 \times 2 \\
& 7+2=14-5 \\
& 7+1=4 \times 2 \\
& 5+2=14-7 \\
& 7-5=4 \div 2 \\
& 5+7=14-2 \\
& 4=(7+1) \div 2 \\
& 4+1=7-2 \\
& 1+2=7-4
\end{aligned}
$$

QUESTIONS

EXTENSIONS

How many different equations can be found using $\quad+$ only?Try with \square 2 3 5 . .
Θ Try with six cards.
(?) How many ways are there of rearranging $7=5+2$?
(?)
How many different equations can be found using all 5 cards?Try making different expressions using $\begin{array}{lllll}1 & \boxed{4} & \boxed{2} & \boxed{7} & \boxed{5}, \\ \text { e.g. } 16= & 1 & 4 & + & 2 \\ 17= & 1 & 2 & + & 5\end{array}$, , and so on.

AREA

PERIMETER

Exploration of the area and perimeter of different shapes. Shapes with a constant area and differing perimeters. Shapes with a constant perimeter and differing areas.

Apparatus

Squares are necessary to find different shapes. Use squared paper for recording.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet				
4	\bullet		\ddots		
5	\bullet				
6	\bullet				

- Perimeter.
- Area by counting squares.
- Creating shapes using squares.
- Recording shapes.

Pupils might explore shapes with:
(a) different perimeters and the same area.

$\mathrm{P}=12$
$A=8$

$$
\begin{aligned}
& P=14 \\
& A=8
\end{aligned}
$$

(b) different areas and the same perimeter.
$A=5$
$\mathrm{P}=12$
$A=8$
$P=12$
$A=8$
$\mathrm{P}=12$
$A=6$

$P=12$
$A=7$

$$
\begin{aligned}
& P=12 \\
& A=9
\end{aligned}
$$

$$
P=16
$$

$$
A=8
$$

$A=8$

$P=18$
$A=8$

QUESTIONS

Is it possible to have a perimeter of an odd number of units?

Can you make a shape with perimeter 8 units and area 4 square units?
?
Can you make a shape with perimeter 16 units and area 16 square units?
(?)
What is the smallest/largest possible perimeter for a shape of area 9 square units.

EXTENSIONS

Try exploring the different possible perimeters of 6 -square shapes.Try introducing right-angled triangles to make shapes of this type.
$\mathrm{A}=2$

$P=4+2$ diagonals.

POLYGONS

Finding different quadrilaterals on a 3×3 geoboard. Naming quadrilaterals: square, rectangle, parallelogram, trapezium.

Apparatus

Use the geoboards to explore the different shapes and special paper 4 for recording the quadrilaterals.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet		\bullet		
4	\bullet		\bullet		
5	\bullet				
6	\bullet		\bullet		

Areas of polygons.
Sorting shapes in different ways.

- Constructing shapes.

Classifying types of quadrilaterals.
Recording shapes.

There are 16 different quadrilaterals:

Some of the quadrilaterals can be labelled: square, rectangle, etc.

QUESTIONS

EXTENSIONS

How many different squares are there?Try pentagons.

What are the names of the quadrilaterals?
?
What is the area of each quadrilateral?Which are symmetrical?Try quadrilaterals on a 3×4 board.Try finding the same quadrilateral in different positions.Try exploring the perimeters of the quadrilaterals.

Quadrilaterals

Here are two:

Make 4-sided shapes (quadrilaterals).

How many different quadrilaterals can you make?

MULTIPLICATION

LEVEL UA N SSM \mathbf{H}							
2							
3	\bullet	\bullet					
4	\bullet	\bullet					
5	\bullet						
6	\bullet						Multiplication facts up to 10×10.
:---							
Number patterns.							

Multiplication facts up to 10×10.

- Number patterns.

Squared paper is needed for drawing a 10×10 square for recording.

NUMBER PATTERNS

Patterns formed by finding the digital products of all numbers up to 100 on a 1 to 100 counting square.

Apparatus

The digital products are:

QUESTIONS

What do you notice about the last column?

What do you notice about the digital products of the 50 s ?
? Which numbers appear least/most often as digital products?

EXTENSIONS

Try extending to 3 -digit numbers on the counting square.Try exploring the digital products on a multiplication square.Try exploring the last digit of the product of the digits for example, $47 \rightarrow 8(4 \times 7=28$, and the last digit is 8).

Production lines

You will need squared paper

Start with a 1 to 100 square.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

The digital product of
24 is $8(2 \times 4=8)$
47 is $6(4 \times 7=28$, then $2 \times 8=16$, then $1 \times 6=6)$

Draw a blank 10×10 square. Write in the digital products.

Fill in the whole square.

			8						
						6			

Find patterns.

© HarperCollins Publishers Ltd. This page may be copied for use in the classroom (see page 2).

DIVISION

Finding different possible division statements using digits chosen from the set 0 to 9 (no repeats allowed).

Apparatus

Use one set of number cards 0 to 9 , and just one operation card for \div.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet	\bullet			
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Dividing a two-digit number by a single-digit number.
- Number patterns.
- Recording results.

Many different division sentences are possible:

$$
\begin{array}{lrlllll}
6 \div 3=2 & 8 \div 4=2 & 10 \div 5=2 & 18 \div 6=3 & 14 \div 7=2 & 16 \div 8=2 & 18 \div 9=2 \\
& 12 \div 4=3 & 20 \div 5=4 & 30 \div 6=5 & 21 \div 7=3 & 24 \div 8=3 & 27 \div 9=3 \\
& & & 28 \div 7=4 & 32 \div 8=4 & 36 \div 9=4 \\
& & & 42 \div 7=6 & 40 \div 8=5 & 54 \div 9=6 \\
& & & & & 56 \div 8=7 & 63 \div 9=7 \\
& & & & & & 72 \div 9=8
\end{array}
$$

Each of these can be expressed in two ways.
For example, $8 \div 4=2$ and $8 \div 2=4$.
Pupils may find calculators helpful.

QUESTIONS

EXTENSIONS

(?) How many sentences can be found to equal 2 ?
(?) Can you find two different sentences with the result 18 ?

Try making sentences with two-digit results, e.g. $60 \div 5=12$.Try replacing \square by \qquad x

Try finding all the different sentences that include a 5

Foursomes

SHAPE PATTERNS

Finding different shapes by arranging four L-shaped pieces.

Apparatus

Pupils will need four L-shaped pieces.
These can be made by cutting one quarter from each of four card squares.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet	\ddots		
3	\bullet		\ominus		
4	\bullet		\ddots		
5	\bullet				
6	\bullet				

- Creating pictures using 2D shapes.
- Symmetry.
- Constructing shapes: rectangles, etc.
- Recording shapes.

Many different shapes can be made. These include:

T-shape

$3 / 4$ of a square

2×6 rectangle
4×3 rectangle

Staircase

Interlocking squares

Cross

Square hole

Letter H

QUESTIONS

EXTENSIONS

What is the area in square units of one L-piece?
(2)

What is the area in square units of each shape?How many rectangles of different sizes can be made?

Try exploring the perimeters of the different shapes.Try making symmetrical shapes.
Try making shapes using four of these:

Foursomes

You will need
card squares
Start with 4 squares.

Make four of these shapes by cutting one quarter out of each square.

Arrange the shapes to make larger shapes.

A cross

Make other shapes.

A rectangle

AREA

Drawing different sized squares on square dotty paper and finding the area of each.

Apparatus

Special paper 4 can be used for recording the different squares. Geoboards can be used for finding the squares.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet				
4	\bullet				
5	\bullet				
6	\bullet				

Area by counting squares.

- Constructing shapes.

If any two dots are joined by a straight line then it is possible to draw a square with that line as an edge.
For example:

Area 17 square units

The areas can be found by dividing the squares into sections. It is possible to draw squares with the following areas: $1,2,4,5,8,9,10,13,16,17,18,20, \ldots$ square units.

Area 13 square units

QUESTIONS

What square areas of less than 6 square units can be found?

What square areas are not possible?
(?) What are the areas of squares drawn with horizontal and vertical lines?

EXTENSIONS

Try drawing triangles with different areas.Try drawing rectangles.

Dotty squares

You will need square dotty paper

This square has an area of 4 square units.

This square has an area
 of 8 square units.

Draw some more squares.
Find their areas.

ADDITION

Addition of several single-digit numbers. Different paths across a 3×3 grid.

Apparatus

Use squared paper to record the different trails across the grid.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet				
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Addition of several single-digit numbers.
- Sorting shapes.
- Traversing networks.
- Recording results.

Assume that a diagonal move is not allowed. Then, if the first move is upward:

$2+6+9+5$
$+4=26$

And if the first move is across:

$2+3+1+$
$8+4=18$

$2+3+7+$
$5+4=21$
$+4=27$

$2+6+7+5$
$+4=24$

$2+3+7+$
$8+4=24$

$2+6+9+5$
$+7+3+1$ $+8+4=45$

$2+6+9+$
$5+7+8+$
$4=41$

$2+6+7+$
$3+1+8+$ $4=31$

$2+3+1+$
$8+7+6+$
$9+5+$
$4=45$

$2+3+1+$
$8+7+5+$
$4=30$

$2+3+7+$
$6+9+5+$
$4=36$

There are 12 possible trails producing 10 different totals:
$18,21,24,26,27,30,31,36,41,45$

QUESTIONS

How many different trails can you find?
(?)
Which trail gives the smallest/greatest total?
(?) Which trails have a total nearest to 25?

EXTENSIONS

Try exploring longer trails.Try with a different arrangement of the numbers.

5	8	9
7	4	2
3	6	1

Try with a 4×4 grid, repeating some numbers.

Try with a rectangular grid.

MULTIPLICATION

NUMBER PATTERNS

Patterns in the results of multiplying two-digit numbers by 11.

Apparatus

Calculators are suggested for multiplying by 11 , though pupils could also try to use a multiplication algorithm.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet				
4		\bullet			
5	\bullet				
6	\bullet				

- Multiplication of two-digit numbers by 11 .
- Generalising patterns in words.

Pupils should eventually be encouraged to predict the answer, and then use the calculator as a check.

To start with, pupils could list some numbers in order and multiply them by 11. For example:

$$
\left.\begin{array}{l}
21 \times 11=231 \\
22 \times 11=242 \\
23 \times 11=253 \\
24 \times 11=264 \\
25 \times 11=275 \\
26 \times 11=286 \\
27 \times 11=297 \\
28 \times 11=308 \\
29 \times 11=319
\end{array}\right\}
$$

A pattern emerges here:

$$
\begin{array}{ll}
& a b \times 11=a a+b b \\
\text { e.g. } & 21 \times 11=22+11 \\
& 21 \times 11=23
\end{array}
$$

The pattern needs adapting slightly here.

Numbers which can be most easily multiplied by 11 'in the head' are those whose digit sum is not more than 9 .

11	12	13	14	15	16	17	18
21	22	23	24	25	26	27	
31	32	33	34	35	36		
41	42	43	44	45			
51	52	53	54				
61	62	63					
71	72						
81							

QUESTIONS

Can you multiply these by 11 , 'in your head' $-31,43,62$?How far can you go with the 11 -times table?How many two-digit numbers have a digital sum not more than 9 ?

EXTENSIONS

 Try multiplying three-digit numbers by 11 .Try multiplying by $101,111, \ldots$

Elevenses

You will need a calculator

$23 \times 11=253$
$42 \times 11=462$

Multiply some more numbers by 11. Search for patterns.

Look for a quick method that does not use a calculator.

POLYGONS

Joining right-angled isosceles triangles to make different shapes. Names of different polygons. Perimeter. Conservation of area.

Apparatus

Triangles can be cut from squares of card. Use squared paper for recording the different shapes.

LEVEL	UA	\mathbf{N}	SSM	HD	A
1					
2		\bullet			
3	\bullet				
4	\bullet		\ddots		
5	\bullet				
6	\bullet				

- Perimeter.
- Sorting shapes.
- Constructing different shapes from right-angled triangles.
- Recording results.

There are 4 different possible shapes using 3 right-angled triangles.

There are 14 different possible shapes using 4 right-angled triangles.

QUESTIONS

Which shapes have the same area?

What are the names of the three two-triangle shapes?
?
Can you name some of the other shapes?Try joining equilateral triangles.

How many sides does each shape have?

Square search

SQUARES

NUMBER PATTERNS

Counting the different squares in rectangular grids. Patterns in the numbers of squares of different sizes.

Apparatus

Use squared paper for recording the different rectangles and illustrating their division into different squares.

LEVEL	UA	N	SSM	HD	A
1					
2			\bullet		
3	\bullet				
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Explaining number patterns.
- Generalising patterns in words.
- Rectangles.

Discussion may be necessary to establish that a square is a special rectangle. So, for instance, a 3×3 square grid can be considered.
The squares can be illustrated by coloured outlines.

A systematic approach is to consider first the rectangles of width 2 , then of width 3 .

Rectangle	1×1 squares	2×2 squares	3×3 squares	
2×3	6	2		8
2×4	8	3		11
2×5	10	4		14
$::$				$2 b+b-1$ or $3 b-1$
$2 \times b$	$2 b$	$b-1$		8
3×2	6	2		14
3×3	9	4	1	20
3×4	12	6	2	
$::$				$6 b-4$
$3 \times b$	$3 b$	$2(b-1)$		

QUESTIONS

How many squares are there in a $5 \times 1,7 \times 1$, $10 \times 1, \ldots$ rectangle?
(?) How many 1×1 squares are there in a 5×3 rectangle?
? What is the area of each rectangle?
(?) What is the largest possible square in a 10×3 rectangle?

EXTENSIONS

Try exploring the number of rectangles in a rectangular grid.Try exploring the number of triangles in a triangular grid.

ADDITION

Addition of two, three, four, . . . numbers to make given totals.
Different ways of summing four numbers, for example, to make a given total.

Apparatus

Use cards numbered 1 to 20 .

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet	\bullet			
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Addition of several single-digit numbers.
- Number patterns.
- Recording results.

One approach is to list all the possible ways of making the total 15 using 2 cards, 3 cards, and so on.

So possible solutions include:

QUESTIONS

EXTENSIONS

How many different 2-card totals of 15 are possible?
? Is it possible to find a 5 -card total of 15 ?
? Is it possible to find a 5-card total of 14 ?
? How many different 4-card totals of 12 can you find?

Total ఓmezements

You will need cards 1 to 20

11
 12 13 14
 15
 16 17 18 19
 20

Choose a total.

Now make the total 20 in different ways.
Each card may only be used once.

10$6 \mid 3$ \square 4 cards

Start again and make the total 15 in different ways.

Make some totals of your own.

MIXED NUMBER OPERATIONS

Operations of addition, subtraction and multiplication.
Combinations of two operations. The need for brackets.

Apparatus

Calculators may be useful for checking some of the harder expressions.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet	\bullet			
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Addition, subtraction, multiplication involving single-digit, two-digit and three-digit numbers.
- Number patterns.

Some possibilities are:

Using ' + ' signs
$32=23+9$
$41=32+9$
$32=29+3$
$95=92+3$
$41=39+2$
$95=93+2$
$14=2+3+9$

Using '-' signs
$14=23-9$
$23=32-9$
$26=29-3$
$89=92-3$
$37=39-2$
$91=93-2$
$4=(9-3)-2$
$8=9-(3-2)$

Using ' x ' signs
$207=23 \times 9$
$288=32 \times 9$
$276=92 \times 3$
$87=29 \times 3$
$78=39 \times 2$
$186=93 \times 2$
$54=2 \times 3 \times 9$

Using ' + ' or ' - ' and ' x ' signs
$29=(3 \times 9)+2$
$25=(3 \times 9)-2$
$21=(2 \times 9)+3$
$15=(2 \times 9)-3$
$15=(2 \times 3)+9$
$3=9-(2 \times 3)$

QUESTIONS

EXTENSIONS

Which numbers have more than one different expression? e.g. $32=23+9,32=29+3$.?
Which is the greatest possible number?

Try with a different set of digits.Try using division signs, e.g.
$5=(9 \div 3)+2$.Try using power signs, e.g. $18=3^{2}+9$.Try using square root signs, e.g. $16=\sqrt{ } 9+13$.

You will need a calculator

Use the digits 9,3 and 2 to make numbers. A digit may only be used once each time.

Here are some examples.

Using ' + ' signs
$39+2$ makes 41
$92+3$ makes 95

Using '- - ' signs
$39-2$ makes 37
$(9-3)-2$ makes 4

Using ' + ' or ' - ' and ' x ' signs
$(3 \times 9)+2$ makes 29
$(2 \times 9)-3$ makes 15

Make some more numbers using 9,3 and 2 .

SHAPE PATTERNS

Investigating the number of regions formed by chords joining different numbers of points marked on the circumference of circles.

Apparatus

The circles can be drawn with compasses, or by drawing around a circle template.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet	0			
4	0		0		
5	\bullet				
6	0				

- Searching for number patterns.
- Constructing shapes and their diagonals.

Pupils should draw large circles, particularly when using more than 4 dots, so that they can easily count the regions.

A pattern appears to be emerging for 2, 3, 4 and 5 dots, but it breaks down with 6 dots.

Number of dots	Number of regions
2	2
3	4
4	8
5	16
6	31

Note: For a regular hexagon this figure is 30 , because region 18 , above, disappears.

QUESTIONS

What shapes are the regions?Try counting the number of intersections.How many of the regions are triangles?How many chords are drawn from each dot?

EXTENSIONS

Try counting the number of straight lines.

You will need circles

Draw a circle.
Mark 4 dots.
Join them with straight lines.

Draw another circle.
Change the number of dots.
Count the number of regions.

TRIANGLES

Exploration of different triangles measured in terms of 'perimeter' dots and 'inside' dots. Types of triangle: equilateral, isosceles, acute-angled, obtuse-angled, right-angled.

Apparatus

Use special paper 5 to find and record the triangles. Pupils may want to cut out their triangles when recording.

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet		\ddots		
4	\bullet		\bullet		
5	\bullet				
6	\bullet				

- Sorting triangles.
- Constructing different triangles.
- Recording shapes.

One approach is to fix the number of perimeter dots on one side and then search for different positions for the other two sides. In this example, one side with 5 dots is fixed:

Here, one side with 4 dots is fixed:

1 inside dot

1 inside dot

4 inside dots

QUESTIONS

(?) Which triangles are equilateral?
? Which triangles are isosceles?
(?) Which triangles are right-angled?
(?) Is it possible to make a triangle with 2 inside dots, 3 inside dots, . . .?

EXTENSIONS

Try drawing different triangles with 2 inside dots.

Try drawing triangles on square dotty paper.

Perimeter dots

You will need
triangle dotty paper

0 inside dots

4 inside dots

2 inside dots

Each of these triangles has 6 perimeter dots.

Find some more triangles with 6 perimeter dots.

Hard times

MULTIPLICATION

Multiplication of two-digit numbers. Commutativity. Estimation.

Apparatus

Use number cards 1 to 9 . These will help pupils to search for different arrangements. The calculators can be used to perform the multiplications.

- Multiplication of two two-digit numbers.
- Recording results.

Pupils should be encouraged to estimate an answer before using the calculator. Some discussion is useful about 34 and 56 having the same value, i.e. commutativity. $\times 56 \quad \times 34$

A systematic approach is to try all possible arrangements with the 3 as a tens digit, and then all the possible arrangements with the 3 as a units digit.

The different possibilities are:

So there are 12 different possible answers altogether.

QUESTIONS

? What is the smallest/greatest possible answer?
? How many answers end in zero?
(?) Is it possible to predict the end digits in the answers?
? Will there always be 12 different answers?

EXTENSIONS

Try with a different set of 4 cards.Try with two cards the same, e.g.
Try with two three-digit numbers and 6 cards.

Muntiples

MULTIPLICATION

Multiples of different numbers, possibly extending beyond the tenth multiple. Odds, evens, square and prime numbers.

Apparatus

Use cards numbered 0 to 9 .

LEVEL	UA	N	SSM	HD	A
1					
2		\bullet			
3	\bullet				
4	\bullet				
5	\bullet	\bullet			
6	\bullet				

- Multiples of single-digit numbers.
- Primes and square numbers.
- Recording results.

Pupils may find it helpful to make lists of different multiples.
There are different ways of making four multiples of 4.

12	32	20
4	4	36
8	16	4
36	8	8

It is possible to make six multiples of 3 .
Here is one solution, using all ten cards: $3,9,12,45,60,78$
Some ways of making multiples of other numbers include:

$\mathbf{x 2}$	$\mathbf{x 3}$	$\mathbf{x 4}$	$\mathbf{x 5}$	$\mathbf{x 6}$	$\mathbf{x} 7$	$\mathbf{x 8}$	$\mathbf{x 9}$	$\mathbf{x 1 0}$
2	3	4	5	96	805	8	9	70
4	9	8	30	54	91	16	18	
6	12	16		18	7	72	27	
8	45	32		30	63	40	36	
10	60			72	42		45	
	78							

QUESTIONS

How many different multiples of 5 can be made? Why?

How many different multiples of 10 can be made? Why?

How can 4 be used for multiples of 3 ?
Why is it impossible to make more than four multiples of 4 ?

EXTENSIONS

Try exploring different ways of making four multiples of 4 .

Try making other types of numbers, e.g. square numbers, prime numbers, odd and even numbers.

Try making multiples of numbers greater than 10.

Multiples

You will need
these cards

Now make different multiples of 4. Each card may be used only once.

four multiples of 4
 4

36

not used

Use the cards to make different multiples of 3

38

Face to face

NUMBER PATTERNS

Finding different arrangements of the faces of two numbered cubes to make two-digit numbers.

Apparatus

Blank cubes are required so that numbers can be written on the faces.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet	\bullet			
4	\bullet	\bullet			
5	\bullet				
6	\bullet				

- Number patterns in two-digit numbers.
- Generalise patterns in words.

There are 63 different possible two-digit numbers. These can be found by keeping one dice fixed and trying different positions for the other.

Using the $1,2,3,4,5,6$ cube as the tens digit, these are the different numbers.	14	24	34	44	54	64
	15	25	35	45	55	65
	16	26	36	46	56	66
	17	27	37	47	57	67
	18	28	38	48	58	68
	19	29	39	49	59	69
Using the $4,5,6,7,8,9$ cube as the tens digit, these are the different numbers.	41	51	61	71	81	91
	42	52	62	72	82	92
	43	53	63	73	83	93
	44	54	64	74	84	94
	45	55	65	75	85	95
	46	56	66	76	86	96

These are common to both sets.

QUESTIONS

EXTENSIONS

Which is the smallest/greatest possible number?? Can you make all the numbers between 60 and 70 ?Which numbers can be found in two different ways?

Try numbering the cubes differently.

Try with 3 cubes to make three-digit numbers.

You will need two blank cubes

On the faces of one cube write 1.23456.

On the other cube write $45 \underline{6} 78 \underline{9}$ ．

Put the two cubes together．

These show 17.

How many different two－digit numbers can you show？

SHAPE PATTERNS

Making different patterns based on the regular pentagon.

Apparatus

Use special paper 3 for drawings of regular pentagons.

LEVEL	UA	N	SSM	HD	A
1					
2					
3	\bullet				
4	\bullet		0		
5	\bullet				
6	\bullet				

- Constructing shapes and patterns.
- Rotational symmetry.

Pupils should be encouraged to be accurate in the drawing of the guidelines and also in the colouring of the patterns. Some patterns can be created by using the diagonals.

More intricate patterns can be created by drawing additional guidelines.

Pupils could invent names for their designs.
Many designs will have rotational symmetry.

QUESTIONS

EXTENSIONS

(?) Which patterns are symmetrical?
? What shapes can you see in each design?
? How many different pentagons are there in each design?

Try starting with regular hexagons.

Try cutting out some of the designs.

Try pasting the designs onto the faces of a dodecahedron.

Remainders

DIVISION

NUMBER PATTERNS

Remainders when dividing by 4 . Remainders when dividing by other numbers. Patterns in repeating cycles of digits.

LEVEL UA N SSM HD A $\mathbf{1}$ 2 \bullet $\mathbf{3}$ \bullet \bullet $\mathbf{4}$ \bullet \bullet $\mathbf{5}$ \bullet $\mathbf{6}$ \bullet					
- Remainders.					
- Division by single-digit numbers.					
- Number patterns.					
Recording outcomes.					

Patterns are easier to spot if the numbers are arranged in sequence.
Numbers which give a remainder of 1 are:

$$
5,9,13,17,21,25,29,33, \ldots
$$

Note the repeating cyclic pattern in the last digits:

$$
5,9,3,7,1,5,9,3, \ldots
$$

The possible remainders are $0,1,2$ and 3 .

Remainder	Numbers	Repeating pattern in last digits
0	$4,8,12,16,20,24,28,32, \ldots$	$4,8,2,6,0 ; \ldots$
1	$5,9,13,17,21,25,29,33, \ldots$	$5,9,3,7,1 ; \ldots$
2	$6,10,14,18,22,26,30,34, \ldots$	$6,0,4,8,2 ; \ldots$
3	$7,11,15,19,23,27,31,35, \ldots$	$7,1,5,9,3 ; \ldots$

The repeating patterns are identical for numbers with remainders 0 and 2, and also for numbers with remainders 1 and 3.

QUESTIONS

EXTENSIONS

(?)
How many different remainders are possible when dividing by 4 ?

How many different remainders are possible when dividing by $6,8,3, \ldots$?

Special paper 1

Special paper 4

Special paper 5

Special paper 6

The investigations in Spectrum Maths come in three books which will complement and enrich any mathematics scheme.

Starting Investigations for National Curriculum Levels 1-3 ISBN 0003126935

More Investigations for National Curriculum Levels 2-5
ISBN 0003126943
Go Further with Investigations for National Curriculum Levels 3-6 ISBN 0003126951

Clear easy-to-use instructions for the teacher:

- National Curriculum Attainment Levels at a glance
- Notes outlining possible results of the activities
- Ideas for consolidation, development and extension

Photocopiable pages for the children:

- Well-thought-out activities for children of 5-14 working at Levels 1 to 6
- Special sheets to help with recording
- Simple language
- Attractive presentation

Also available in the Spectrum Maths series:
For National Curriculum Levels 1-3
Starting Algebra/Shape and Space
Starting Data Handling
Starting Number Skills
Starting Games
ISBN 0003126846

For National Curriculum Levels 2-5
More Algebra/Shape and Space
More Data Handling
More Number Skills ISBN 000312696 X ISBN 0003126870 ISBN 0003126900

More Games
ISBN 0003126854
ISBN 0003126978
ISBN 0003126889

For National Curriculum Levels 3-6
Go Further with Algebra/Shape and Space
Go Further with Data Handling
Go Further with Number Skills
ISBN 0003126919

Go Further with Games
ISBN 0003126862
ISBN 0003126986
ISBN 0003126897
ISBN 0003126927

CollinsEducational
An imprint of HarperCollinsPublishers

