Race 1: Shelsey Walsh

Start

Flat for 6 km
Downhill 1:10 for 2 km
Uphill 1:10 for 6 km
Downhill 1:10 for 4 km
Flat for 7 km

$\mathbf{~ \$ ~ M ~}$

Distance time graph

Race 2: Prescot Park
Start
Downhill 1:10 for 4 km
Uphill 1:10 for 2 km
Flat for 7 km
Uphill for 4 km
Downhill for 8 km

WWW

Our car: Performance
Data from the activity sheet "How fast

Speed km/h
Flat
Up slope
Down slope

Race 3: Loton Park
Start
Uphill 1:10 for 0.5 km
Flat for 2.5 km
Uphill 1:10 for 4.5 km
Flat for 3.5 km

Uphill for 1.5 km
WWH

Activity

Use graph paper to draw distance time graphs for your car competing in the 3 races

[^0]
Racing team name :

Assemble your car and test its performance

Data collection
Time in seconds (to 2 decimal places)

	Time in seconds (to 2 decimal places)					
Test surface	Distance (m)	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5
Flat						
Up slope						
Down slope						

gradient $=0$

Up slope gradient $=0.1$

Down slope gradient=-0.1

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}
$$

Data analysis

Test surface	Average time (s)	Speed m / s	Speed km/h	
Flat				
Up slope				
Down slope				

Racing team name :

Hill climbing attracts many competitors and spectators.

Gradient = \qquad
Angle =
\qquad
Comments:

\qquad
\qquad
\qquad
\qquad
\qquad

Modified car

Engineer your car for improved hill climbing

Engineering Factors

Our modifications:

Factor	Description	Gradient/ angle	\% improvement

[^0]: Time (mins)

